搜索资源列表
H-ELM
- 可用作数据分类和拟合,深度极限学习机拥有深度学习的优势和自身计算速度快的优势(It can be used to classify and fit data. The deep extrme learning machine has the advantages of depth learning and fast computing speed.)
深度(多层)极限学习机的python实现
- 深度极限学习机也叫多层极限学习机,ML-ELM。是黄广斌等人在极限学习机ELM基础上,将其拓展为深度学习的一种模式识别方法,原文文章:Representational learning with extreme learning machine for big data。(The deep extreme learning machine is also called the multi-layer extreme learning machine, ML-ELM. It is Huang Gu
结合双模多尺度 CNN 特征及自适应深度KELM 的浮选工况识别
- 针对可见光图像特征驱动的浮选工况识别方法的不足,提出一种基于双模态图像多尺度 CNN 特征及自适应深度自编码核极限学习机(Kernel Extreme Learning Machine,KELM)的浮选工况识别方法。先对泡沫的可见光、红外图像进行非下采样剪切波多尺度分解,设计双通道 CNN 网络对双模态多尺度图像进行特征提取及融合,将多个双隐层自编码极限学习机串联成深度学习网络对 CNN 特征逐层抽象提取,然后通过核极限学习机映射到更高维空间进行决策,最后改进量子细菌觅食算法并应用于深度自编码