搜索资源列表
Visual_C++_MATLAB
- 《Visual C++_MATLAB图像处理与识别实用案例精选》本书系统地介绍了图像处理与识别的基本原理、典型方法和实用技术。全书共分12章,第1章-第6章是图像处理与识别的基础内容,包括图像科学综述、MATLAB语言图像编程、图像增强、图像分割、图像特征提取和图像识别;第7章-第10章是图像处理与识别的工程实例,涵盖了医学图像处理、文字识别和自导引小车路径识别等应用实例,并结合理论算法,提供了大量MATLAB代码程序,以帮助读者掌握如何使用MATLAB语言快速进行算法的仿真、调试和估计等方法。
1
- 基于视觉传感器实现道路信息的理解是目前移动机器人自主导航的重要研究方向,其中道路图象的正确分割 是提取有效路径信息的关键。该文针对复杂、干扰因素多的室外环境下传统方法难以实现道路图象正确分割的问题,提 出了一种基于’() 神经网络的道路图象分割方法。该方法通过选取道路图象的归一化色彩分量为特征向量,应用基于 ’() 学习算法的神经网络分类器进行道路与非道路识别;为解决环境噪声对神经网络输出的影响,本文设计了串行级联 式四阶形态滤波器实现对神经网络输出的分割图象的滤波处理。通过对实
neural-network-back-propagation-algorithm
- 每一个训练范例在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传递各层并经过处理后,产生一个输出,并得到一个该实际输出和所所需输出之差的差错矢量;一遍向反向传播计算,从输出层至输入层,利用差错矢量对权值进行逐层修改。BP算法有很强的数学基础,戏剧性地扩展了神经网络的使用范围,产生了许多应用成功的实例,对神经网络研究的再次兴起过很大作用。
基于BP神经网络的厦门楼盘走势预测
- 本文基于BP神经网络应用于预测的原理,提出预测步骤及预测可行性,探讨建立基于BP神经网络的预测模型的关键技术,包括样本的选取与预处理、输入输出变量的选取、隐层节点数的确定、初始权值和阈值的选取、激活函数、训练算法与参数的选取,最后建立合理的网络模型;结合住宅市场的实际情况,建立两类BP 神经网络预测模型:基于时间序列的趋势预测模型以及基于影响因素的回归预测模型,即分别采用神经网络趋势预测和回归预测的思路,把住宅市场的供给、需求与房价的历年数据以及其影响因素的数据分别作为学习样本,建立预测模型,
LmNet_PF
- LmNet PF 神经网络预测平台是公司基于最优神经网络算法(Levenberg-Marquardt动量项法)开发的通用预测平台工具。它是针对用户进行预测需要,快速构建神经网络应用的通用预测平台,它能解决包括销售量预测、销售价格预测、成本预测、市场潜力预测、新产品价格预测等方面的预测分析。功能包括:新建、修改网络模型;网络训练;网络仿真;误差分析;专家样本数据自动生成;节点配置;数据归一化处理;网络参数初始化设置等。~..~ -Neural Network Prediction LmNet
DCT
- 本文设计基于DCT的人脸识别系统,首先结合当今人脸识别的背景和发展状况讨论了人脸识别的研究内容及在各方面的应用;然后研究了人脸识别进行预处理,讨论了人脸识别预处理的其他方法,分析各种方法的利弊,最后采用DCT(离散余弦变换)实现人脸图像预处理中的降维处理;接下来对人脸图像的特征提取进行了研究,简单叙述了几何特征提取和代数特征提取,同时深入研究了基于DCT和PCA变换的人脸图像特征提取,从而实现是否对人脸识别系统识别率有所提高的研究;对于分类器的选择,本文对两种分类器进行了探讨,即最近邻分类器和B
NES
- 浅谈人工神经网络;人工神经网络的研究与应用;人工神经网络在图像匹配中的应用;于神经网络算法的字符识别方法研究-Of artificial neural networks artificial neural network research and applications Artificial Neural Network in Image Matching on neural network algorithm for character recognition method
xiaobo
- 本书全面系统介绍了小波分析的基本理论和最新研究成果,重点介绍小波分析的应用成果,并通过软件实现来检验应用效果。全书分为三篇:第一篇是小波理论,包含8章内容,小波分析的发展历史及文献综述、准备知识、多分辨分析与共轭滤波器、连续小波变换、最佳小波基的构造及算法、二维母小波的构造、框架与样条小波理论、时间----频率分析;第二篇是小波应用,包含12章内容,详细介绍了小波分析在图象压缩、流体力学、工业CT、故障诊断、语音分割、数学物理、地球物理勘探、医学细胞识别、线性系统、神经网络等方面的应用;第三篇是
development-risk-prediction
- 本文基于BP神经网络应用于预测的原理,提出预测步骤及预测可行性,探讨建立基于BP神经网络的预测模型的关键技术,包括样本的选取与预处理、输入输出变量的选取、隐层节点数的确定、初始权值和阈值的选取、激活函数、训练算法与参数的选取,最后建立合理的网络模型;结合住宅市场的实际情况,建立两类BP 神经网络预测模型:基于时间序列的趋势预测模型以及基于影响因素的回归预测模型,即分别采用神经网络趋势预测和回归预测的思路,把住宅市场的供给、需求与房价的历年数据以及其影响因素的数据分别作为学习样本,建立预测模型,
DS18B20
- 本书系统地介绍了图像处理与识别的基本原理、典型方法和实用技术。全书共分12章,第1章-第6章是图像处理与识别的基础内容,包括图像科学综述、MATLAB语言图像编程、图像增强、图像分割、图像特征提取和图像识别;第7章-第10章是图像处理与识别的工程实例,涵盖了医学图像处理、文字识别和自导引小车路径识别等应用实例,并结合理论算法,提供了大量MATLAB代码程序,以帮助读者掌握如何使用MATLAB语言快速进行算法的仿真、调试和估计等方法。第11章-第12章,是两个综合性较强的实例,分别足Visual
wzrh
- (1)针对在线计算量大这一缺陷,将预测控制中的柔化输出信号的思想推广到柔化输入信号,使得约束条件被简化为仅对当前控制量的约束,可以直接计算得出;同时该方法避免了求逆矩阵,大大减小了计算量,并能够保证控制算法的可行性和良好的控制性能。 (2)针对传统算法中设计参数整定困难这一缺点,应用基于BP神经网络变参数设计的广义预测控制算法,实现了对控制量柔化参数的在线调整。 (3)利用带有遗忘因子的最小二乘法对系统辨识。本文通过仿真发现该方法对于Hénon混沌系统并不完全适用,可考虑利用其他优化系统
xor
- bp解决xor问题 BP网络是目前前馈式神经网络中应用最广泛的网络之一,实现BP算法训练神经网络完成XOR的分类问题。 设计要求: (1) 能够设置网络的输入节点数、隐节点数、网络层数、学习常数等各项参数; (2) 能够输入训练样本; (3) 实现BP算法的训练过程; (4) 实现训练过程的动态演示; (5) 训练完成后可输入测试数据进行测试。 -bp xor problem solving
bp-solve
- BP网络是目前前馈式神经网络中应用最广泛的网络之一,实现BP算法训练神经网络完成XOR的分类问题。 设计要求: (1) 能够设置网络的输入节点数、隐节点数、网络层数、学习常数等各项参数; (2) 能够输入训练样本; (3) 实现BP算法的训练过程; (4) 实现训练过程的动态演示; (5) 训练完成后可输入测试数据进行测试。 -BP neural network is feedforward neural networks one of the most widel
Visual-C-MATLAB-image-processing
- 本书系统地介绍了图像处理与识别的基本原理、典型方法和实用技术。全书共分12章,第1章~第6章是图像处理与识别的基础内容,包括图像科学综述、MATLAB语言图像编程、图像增强、图像分割、图像特征提取和图像识别;第7章~第10章是图像处理与识别的工程实例,涵盖了医学图像处理、文字识别和自导引小车路径识别等应用实例,并结合理论算法,提供了大量MATLAB代码程序,以帮助读者掌握如何使用MATLAB语言快速进行算法的仿真、调试和估计等方法。第11章~第12章,是两个综合性较强的实例,分别是Visual
神经网络极速学习方法研究
- 单隐藏层前馈神经网络(Single-hidden Layer Feedforward Neural Network, SLFN)已经在模式识别、自动控制及数据挖掘等领域取得了广泛的应用,但传统学习方法的速度远远不能满足实际的需要,成为制约其发展的主要瓶颈。产生这种情况的两个主要原因是:(1)传统的误差反向传播方法(back propagation,BP)主要基于梯度下降的思想,需要多次迭代;(2)网络的所有参数都需要在训练过程中迭代确定。因此算法的计算量和搜索空间很大。针对以上问题,借鉴ELM的
智能优化算法资料
- 优化算法有很多,经典算法包括:有线性规划,动态规划等;改进型局部搜索算法包括爬山法,最速下降法等,模拟退火、遗传算法以及禁忌搜索称作指导性搜索法。而神经网络,混沌搜索则属于系统动态演化方法。 梯度为基础的传统优化算法具有较高的计算效率、较强的可靠性、比较成熟等优点,是一类最重要的、应用最广泛的优化算法。但是,传统的最优化方法在应用于复杂、困难的优化问题时有较大的局限性。(There are many optimization algorithms, the classical algori
遗传算法改进的神经网络程序
- 自己整理网上的遗传算法改进的神经网络,matlab实现,主要应用于数据函数逼近拟合,网上的一般无法运行。这个可以运行。(The neural network improved by the genetic algorithm on the Internet, matlab implementation, mainly applied to the data function approximation fitting, the network is generally unable to run
weimo
- 基于发现蚁群算法优化神经网络是利用蚁群算法在解空间寻找出一组最优的权值和阈值,然后将这一组解带回到神经网络进行细致优化,从而得到最好的权值和阈值。(Found that the ant colony algorithm to optimize the neural network based on Ant Colony Algorithm in the solution space to find a set of optimal weights and threshold based on,
源程序Maltab在数学建模中的应用卓金武等
- 上篇介绍数学建模中常规方法的matlab实现,包括matlab交互、数据建模、程序绘图、灰色预测、规划模型等方法;还介绍了各种高级方法的matlab实现,包括遗传算法、粒子群算法、模拟退火算法、人工神经网络、小波分析、动态仿真、数值模拟等。下篇以真实的数学建模赛题为案例,介绍了如何用matlab求解实际的数学建模问题,给出了详细的建模过程和程序(The introduction of conventional methods of mathematical modeling in matlab
CNN
- 卷积神经网络分类 调制信号识别 卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度学习(deep learning)的代表算法之一 [1-2] 。卷积神经网络具有表征学习(representation learning)能力,能够按其阶层结构对输入信息进行平移不变分类(shift-invariant classification),因此也被称