搜索资源列表
PS0-SVR
- :针对发酵过程中生物参数难以实时在线测量的问题,建立了用于生物参数状态预估的 支持向量机软测量模型。考虑到该支持向量回归(SVR)模型的复杂性和冷化特征取决于其三 个参数 ,c, 能否取到最优值,采用粒子群优化(PSO)算法实现对参数 ,c, 的同时寻优。在 此基础上,以饲料用 .甘露聚糖酶为对象,建立了基于PSO—SVR的发酵过程产物浓度状态预估 模型。发酵罐控制结果表明:该模型具有很好的学习精度和泛化能力,可实现对 .甘露聚糖酶 产物浓度的实时在线预估。-In
SVM_Short-term-Load-Forecasting
- 优秀论文及配套源码。首先阐述了负荷预测的应用研究现状,概括了负荷预测的特点及其影响因素,归纳了短期负荷预测的常用方法,并分析了各种方法的优劣;接着介绍了作为支持向量机(SVM)理论基础的统计学习理论和SVM的原理,推导了SVM回归模型;本文采用最小二乘支持向量机(LSSVM)模型,根据浙江台州某地区的历史负荷数据和气象数据,分析影响预测的各种因素,总结了负荷变化的规律性,对历史负荷数据中的“异常数据”进行修正,对负荷预测中要考虑的相关因素进行了归一化处理。LSSVM中的两个参数对模型有很大影响,
PSO
- 粒子群优化支持向量机算法,里面有具体的例子,可以很好的学习-Particle swarm optimization algorithm for support vector machines, there are specific examples of good learning
sinc
- 粒子群算法优化极限学习机的参数,实现SINC函数拟合-The particle swarm algorithm to optimize the parameters of the extreme learning machine, realizes the SINC function fitting
PSO_ELM
- 粒子群优化的超限学习机,运行快,拟合效果好,很方便使用(The particle swarm optimization of the overrun learning machine, fast operation, good fitting effect, very convenient to use.)
粒子群算法优化极限学习机PSO_ELM
- PSO粒子群算法优化极限学习机ELM参数,即PSO-ELM(The PSO particle swarm optimization algorithm is used to optimize the extreme learning machine ELM, ie pso-elm)
anfis-elm-pso-master
- matlab。优化PSOELM算法源码,粒子群优化算法极限学习机(The matlab. Optimal PSOELM algorithm source code, the particle swarm optimization algorithm is extreme learning machine)
神经网络入门13课源码
- 神经网络入门13课源码 第一课 MATLAB入门基础 第二课 MATLAB进阶与提高 第三课 BP神经网络 第四课 RBF、GRNN和PNN神经网络 第五课 竞争神经网络与SOM神经网络 第六课 支持向量机( Support Vector Machine, SVM ) 第七课 极限学习机( Extreme Learning Machine, ELM ) 第八课 决策树与随机森林 第九课 遗传算法( Genetic Algorithm, GA ) 第十课 粒子群优化( Part
PSO-ELM
- PSO-ELM 粒子群算法优化极限学习机(PSO-ELM Particle swarm optimization for extreme learning machine)
ELM_PSO-master
- 为了提升配网供电可靠性的预测精度!提出了基于主成分分析和粒子群优化极限学习机的配网供电可靠 性预测模型$ 从多方面分析影响供电可靠性的指标!利用主成分分析得到综合变量!实现对数据的降维$ 在此基 础上!构建人工神经网络并利用粒子群算法优化极限学习机的输入权值和阈值!完成对训练供电可靠性预测模型 的训练$ 以某大型电网的 ?L 个供电局样本 !% 种影响供电可靠性因素为例进行仿真分析!并将 E S R C E FQ C 4 G D算 法与 ! 种回归拟合算法对比!验证了该方法的有效性(It i
pso-elm
- 极限学习机,单隐层前馈神经网络,算法源程序。(Extreme learning machine, single hidden layer feedforward neural network, algorithm source code.)
基于PCA+PSO-ELM的工程费用估计
- 利用主成分分析法结合粒子群(PSO)优化极限学习机(ELM)进行工程费用估计预测(In this paper, principal component analysis (PCA) combined with particle swarm optimization (PSO) optimization extreme learning machine (ELM) is used to estimate and forecast engineering cost)