搜索资源列表
EM
- EM算法介绍及Matlab演示代码(一维和多维高斯混合模型学习算法)-Introduction of EM algorithm and Matlab codes that implement the algorithm
EM-GMM
- 利用EM算法实现高斯混合模型的优化,完成特征建模-Use of EM Algorithm to to achieve the the the optimization of of the Gaussian mixture model, to complete the Feature Modeling
gmm
- 混合高斯模型使用K(基本为3到5个) 个高斯模型来表征图像中各个像素点的特征,在新一帧图像获得后更新混合高斯模型,用当前图像中的每个像素点与混合高斯模型匹配,如果成功则判定该点为背景点, 否则为前景点。通观整个高斯模型,他主要是有方差和均值两个参数决定,,对均值和方差的学习,采取不同的学习机制,将直接影响到模型的稳定性、精确性和收敛性。由于我们是对运动目标的背景提取建模,因此需要对高斯模型中方差和均值两个参数实时更新。为提高模型的学习能力,改进方法对均值和方差的更新采用不同的学习率 为提高在繁忙
m11
- 混合高斯(Mixture of Gaussian, MOG) 背景建模算法和Codebook 背景建模算法被广泛应用于监控视频的运动目标检测问题, 但混合高斯的球体模型通常假设RGB 三个分量是独立的, Codebook 的圆柱体模型假设背景像素值在圆柱体内均匀分布且背景亮度值变化方向指向坐标原点, 这些假设使得模型对背景的描述能力下降. 本文提出了一种椭球体背景模型, 该模型克服了混合高斯球体模型和Codebook 圆柱体模型假设的局限性, 同时利用主成分分析(Principal compon