搜索资源列表
龙格库塔法 求微分方程 fortran
- 龙格库塔法 求微分方程 fortran,希望对大家有帮助
WENO
- 用于CFD的,二维WENO格式的求解器,NS方程,二阶龙格库塔方法。-2D solver for NS equation using WENO method, 2 order Runge-kutta mehtod.
LyapunovspectrumforLorenzattractor
- 附件中是我用fortran写的lorenz混沌吸引子的lyapunov指数谱产生程序。包括三部分内容:如何产生lorenz吸引子,详细注释,如何计算lyapunov指数谱。 需要的话也可以单独提取子程序中的四阶龙格库塔算法。 希望有所用。-Annex is written in fortran I used the Lorenz chaotic attractor of lyapunov index spectrum generation process. Includes three
Debug
- fortran 对二阶边界问题的求解程序,采用了四阶龙格-库塔方法进行计算-fortran on the second-order process for solving the border issue, using the fourth-order Runge- Kutta methods of calculation
fortran-Long-Ge-Ku-Ta
- fortran四阶龙格库塔法 计算程序自己编程-fortran fourth-order Runge-Kutta method
rugekuta
- 龙格库塔方法,用于解微分方程的fortran程序-Runge-Kutta method for solving differential equations fortran program
LORENZ
- 四阶龙格库塔法解lorenz方程的小程序(fortran)-Fourth-order Runge-Kutta method for solving equations applet lorenz(fortran)
Adaptive-Runge-Kutta-method
- 用fortran语言编写了经典的常微分方程数值解法,改进了基本龙格库塔方法,以满足用户精度要求的同时保持计算效率。 -The numerical solution of ordinary differential equation with the fortran language. Improved Runge Kutta method to meet the precision demand of user at the same time maintaining computation
Console1
- 系统仿真应用中的四阶龙格库塔法 欧拉法RK法的fortran程序-System simulation applications in Runge Law Library Tower RK Euler method fortran program
rk
- 一阶,三阶,四阶龙格库塔法的fortran code-First-order, third-order, fourth-order Runge-Kutta method of fortran code
四阶龙格库塔法程序——_fortran语言编写
- 关于Runge-Kutta方法,该方法是用来解形如y'=f(t,y)的常微分方程的经典的4阶R-K方法,用fortran语言编写(With respect to the Runge-Kutta method, the method is used to solve the classical 4 order R-K method of ordinary differential equations such as y'=f (T, y), and is written in fortran la
8.1.1
- 用四阶龙格-库塔法解著名的Lorenz方程,fortran(The four - order Runge - Kutta method is used to solve the famous Lorenz equation.)
lorenz
- 该fortran代码是用龙格库塔法解Lorenz微分方程组,画出二维相图和三维相图。(The Lorenz system is a system of ordinary differential equations first studied by Edward Lorenz. It is notable for having chaotic solutions for certain parameter values and initial conditions. In particular,
常微分方程
- 运用fortran求解常微分方程,1.利用四阶龙格库塔法,计算t每增加h时,利用给定方程先找到变量y的k1和变量p的K1,然后利用公式得到y的k2和p的K2,如此,得到变量y的k1,k2,k3,k4和变量p的K1,K2,K3,K4(Solving Ordinary Differential Equations by fortran)