搜索资源列表
omniNames
- The OMNI Naming Service (omniNames) is an omniORB implementation of the OMG’s COS Naming Service Specification. It offers a way for a client to turn a human-readable name into an object reference, on which the client can subsequently invoke ope
ofdm-tge
- OFDM程序,这么安排矩阵的目的是为了构造共轭对称矩阵 共轭对称矩阵的特点是 在ifft/fft的矢量上 N点的矢量 在0,N/2点必须是实数 一般选为0 1至N/2点 与 (N/2)+1至N-1点关于N/2共轭对称- BPSK simulation using a carrier cosine wave with ISI clc close all clear all figure(1) n=160 for i=1:n data(i
cos
- 啁啾cos周期光纤光栅 Cos-period fiber grating chirp
circle
- function [] = circleagain(a,b,c,r) pixel = 0.1 theta1 = 0 theta2 = 360*pi/180 pix = pixel/r theta = theta1:pix:theta2 global x y z x = a + r*cos(theta) y = b + r*sin(theta) z = ones(1,length(x))*c x=round(x*10)/10 y=ro
matlab
- 文件1:复数的表达与计算;文件2:用matlab计算∛ (-8),并用图形表示;文件3:用符号计算研究方程sin(3)uz^2+vz+3w-a5=0的解;文件4:求阿基米德螺线r=a*θ,(a>0)在θ=0到φ间的曲线长度函数,并求a=1,φ=2п间的曲线长度;文件五:著名的Givens旋转G=[■(cos t&-sin t@sin t&cos t)]对矩阵A=[■(√3/2&1/2@1/2&√3/2)]的旋转作用。-five programs about matlab
Fading-channel-simulation
- 衰落信道仿真 function r = rayleigh( fd, fs, Ns ) r = rayleigh(fd,fs,N) A Rayleigh fading simulator based on Clarke s Model Creates a Rayleigh random process with PSD determined by the vehicle s speed. INPUTS: fd = doppler frequency
circle.m
- function circle(cx, cy, r, linetype) N = 150 x = zeros(1,N+1) y = zeros(1,N+1) for n=1:N+1 x(n) = cx + r*cos(2*pi*n/N) y(n) = cy + r*sin(2*pi*n/N) end hold on plot(x, y, linetype) hold off -function circle(cx, cy, r, lin
Modeling-Rayleigh-fading-channel-based-on-modifie
- This Matlab Code models a Rayleigh fading channel using a modified Jakes channel model. A modified Jakes model chooses slightly different spacings for the scatterers and scales their waveforms using Walsh–Hadamard sequences to ensure zero cross-co
mins
- optimazion of R=((θ_1*sin(20*θ_2)+ θ_2*sin(20*θ_1))^2)*cosh(θ_1*sin(10*θ_1))+(( θ_1*cos(10*θ_2)- θ_2*sin(10*θ_1))^2)*cosh(θ_2*cos(20*θ_2)))) with powel
Desktop
- syms y(t) r 2 V odeToVectorField(diff(y, 2) + 0.5*diff(y, 1) - y^3+y^5 r*cos(t)) M matlabFunction(V, vars , { t , Y }) -syms y(t) r 2 V odeToVectorField(diff(y, 2)+ 0.5*diff(y, 1)- y^3+y^5 r*cos(t)) M matlabFunction(V, vars