搜索资源列表
emd.rar
- 经验模式分解(EMD)将信号分解成多个IMF分量,每个IMF分量代表一定频率尺度的模式,Empirical Mode Decomposition
EMD
- 一维EMD算法 输入ip--待分解数据序列,一维列向量; 输出imf--分解后得到的IMF分量,二维数组表示;-One-dimensional EMD algorithm input ip- be decomposed data series, one-dimensional column vectors output imf- IMF components obtained after decomposition, two-dimensional array representati
emd
- 关于emd经验模式分解的幻灯片,里面给出了多了emd过程,求出imf-emd-imf
emd
- 经验模式分解(EMD)将信号分解成多个IMF分量,每个IMF分量代表一定频率尺度的模式完整源代码-Empirical Mode Decomposition (EMD) to decompose the signal into a number of IMF components, each component of IMF on behalf of a certain frequency-scale model of the full source code
EMD
- 本程序主要通过EMD求IMF,边际谱图和瞬时能量图-This procedure mainly seek through EMD IMF, marginal spectrum and instantaneous energy diagram
求IMF序列与原始序列的互相关系数
- 混沌信号经过EMD分解,得到的IMF序列,求每个IMF序列与原始序列的互相关系数(The chaotic signal is decomposed by EMD to obtain the IMF sequence, and the cross-correlation coefficients between each IMF sequence and the original sequence are calculated)
EMD
- 经验模态分解(Empirical Mode Decomposition,简称EMD)法是美籍华人N. E. Huang等人于1998年提出的,适合于分析非线性、非平稳信号序列,具有很高的信噪比。该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。(Empirical mode decomposition (EMD) is proposed by Chine
emd+HHT1
- EMD分解HHT变换,通过对实测波进行EMD分解为IMF,生成幅值,相位谱,边际谱(EMD decomposes the HHT transform, and generates the amplitude, phase spectrum and marginal spectrum by decomposing the measured wave into IMF by EMD)
emd
- 可以将信号用EMD分解为IMF,经应用检测,本代码可以使用(Signal can be decomposed into IMF EMD, after application detection, the code can be used)
emd
- emd的方法对信号进行处理,得到imf分量(The EMD method processes the signal and obtains the IMF component)
本程序主要通过EMD和hilbert求IMF
- 本程序主要通过EMD和hilbert求IMF,作出HHT归一化能量谱图(三维图),边际谱图和瞬时能量图,并做完备性验证(This program mainly through EMD and Hilbert for IMF, make HHT normalized energy spectrum (three-dimensional graph), marginal spectrum and instantaneous energy diagram, and finished the verif
emd
- 该方法的关键是经验模式分解,它能使复杂信号分解为有限个本征模函数(Intrinsic Mode Function,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。经验模态分解法能使非平稳数据进行平稳化处理,然后进行希尔伯特变换获得时频谱图,得到有物理意义的频率。与短时傅立叶变换、小波分解等方法相比,这种方法是直观的、直接的、后验的和自适应的,因为基函数是由数据本身所分解得到。由于分解是基于信号序列时间尺度的局部特性,因此具有自适应性。(The key of thi
emd
- emd分解程序代码,里面有详细介绍,请下载使用(function imf = emd(x) % Empiricial Mode Decomposition (Hilbert-Huang Transform) % imf = emd(x) % Func : findpeaks x = transpose(x(:)); imf = []; while ~ismonotonic(x) x1 = x; sd = Inf; while (sd > 0.1)
emd方法附数据
- 带数据的emd测试程序,实用高,操作简单(There are three loops in this code coupled together. 1.read data, find out standard deviation ,devide all data by std 2.evaluate TNM as total IMF number--eq1.)
emd
- 适用于emd分解,对信号进行emd分解,分解成若干个IMF分量(It is suitable for EMD decomposition, decomposing the signal into EMD, and decomposing it into several IMF components.)
EMD
- EMD分解IMF程序并出IMF频谱图,一共两个程序(EMD decomposes the IMF program and produces the IMF spectrum diagram)
emd
- 经验模态分解(Empirical Mode Decomposition,EMD)是由 Huang等人于1998年提出的一种针对非线性、非平稳信号的自适应信号分解算法。自该方法提出以后便得到了学术界的广泛关注与研究,经过十几年的研究与发展,在理论方面EMD算法取得了进一步的完善。许多国内外学者也将该方法应用到了地球物理领域,并做了深度的研究与探索。与传统的基于Fourier变换的信号分析方法相比,EMD不仅突破了Fourier变换的局限性,而且不存在如小波变换一样需要预选小波基函数的问题,具有良好
emd
- Emd分解,通过峭度和相关系数选择IMF,进行信号重构,小波分解,小波包分解。(Emd decomposition, selecting IMF by kurtosis and correlation coefficient, signal reconstruction, wavelet decomposition, wavelet packet decomposition.)
emd
- emd分解及其重构,分解成对个IMF,然后进行重构(emd emperical modal decomposition)
emd分解
- 利用MATLAB语言,实现EMD分解,得到各个IMF分量,再重组降噪(Using MATLAB language, EMD decomposition is realized, IMF components are obtained, and then noise reduction is recombined)