当前位置:
首页
资源下载

搜索资源 - Non negative Matrix Factorization image
搜索资源列表
-
0下载:
基于非负矩阵分解(NMF)的人脸特征提取算法,NMF基本思想是找到一个线性子空间W,使的构成子空间的基本图像的像素点都是正值,而且人脸图像在子空间上的投影系数也是正数-Non-negative Matrix Factorization (NMF) of facial feature extraction algorithm, NMF basic idea is to find a linear sub-space W, so that the composition of sub-space o
-
-
0下载:
pet analyze image:
a non-negative matrix factorization code for pet analysis
-
-
0下载:
Nonnegative_matrix_factorization是实现非负矩阵分解的程序,该算法可以用来进行图像分解和模式识别
-Nonnegative_matrix_factorization is to achieve non-negative matrix factorization procedure, the algorithm can be used for pattern recognition and image decomposition
-
-
1下载:
简单的非负矩阵分解算法,实现图片的重构,迭代次数越大,越接近原图-Simple non-negative matrix factorization algorithm, the reconstruction of the picture, the greater the number of iterations, the closer to the original image
-
-
0下载:
基于NMF的多聚焦图像融合 适合于学习图像融合的人员-Multi-focus image fusion based on non negative matrix factorization
-
-
1下载:
为了直接对内燃机振动谱图像进行诊断识别,提出一种基于改进变分模态分解(VMD)、伪魏格纳时频分
析(PWVD)与局部非负矩阵分解(LNMF)的内燃机振动谱图像识别诊断方法-In order to direct the internal combustion engine vibration spectral image for diagnosis recognition is proposed based on the improved variational mode decomposit
-
-
0下载:
非负矩阵分解的最新算法的matlab实现,以及多种算法之间的对比,和在图像识别中的应用,实测可用-The latest non-negative matrix factorization algorithm matlab implementation, as well as the contrast between a variety of algorithms and image recognition applications, the measured available
-
-
0下载:
DNMF实现了NMF延展的功能,是基于NMF的一种创新算法(Discriminant Non-Negative Matrix Factorization aims to extend the Non-negative Matrix Factorization algorithm in order to extract features that enforce not only the spatial locality, but also the separability between cla
-
-
1下载:
DNMF在matlab中的实现,基于R语言的示例改写(Discriminant Non-Negative Matrix Factorization aims to extend the Non-negative Matrix Factorization algorithm in order to extract features that enforce not only the spatial locality, but also the separability between classe
-
-
2下载:
实现高光谱图像的非负矩阵分解,可以在此基础上添加优化算法,实现更高精度和速度。(To achieve hyperspectral image's non negative matrix factorization, we can add optimization algorithm to achieve higher accuracy and speed.)
-