搜索资源列表
基于图像SIFT 特征的图像检索方法
- 基于SIFT特征提取,本文提出了一种多尺度的图像检索算法,将一幅图像转化为多个特征的集合,再通过计算两幅图像特征向量间的欧氏距离进行比较得出结果进而实现图像检索功能。实验结果说明该算法具有尺度、平移、旋转不变性,可以进行良好应用。
ImageRetrieval
- 毕业设计,基于内容的图像检索,支持的检索特征包括 sift,颜色直方图,灰度矩阵,HU不变矩,边缘方向直方图,检索方法使用K-means和K-D树两种,需要OPENCV支持,运行时请先选定一个文件夹来生成特征库,特征库用access数据库保存,只支持JPG文件-Graduate design, content-based image retrieval, search features, including support sift, color histogram, gray matrix,
improved-MSER-algorithm-
- 本文在比较多种仿射不变性区域的基础上,选取最大稳定极值区域(MSER)对图像内容进行分割和提取,并通过构造仿射不变量的方法,对提取出来的区域进行规整化,进而从规整化的区域中提取SIFT描述子,然后根据匹配目标的需要进行特征的组合、变换,以形成易于匹配、稳定性好的特征向量,从而把图像匹配问题转化为特征的匹配问题 通过改进的K均值算法对特征向量进行聚类,聚类中心作为图像的视觉关键词:利用视觉关键词的思想,把文本检索技术领域的方法移植到图像检索应用上;并研究视觉关键词之间的空间约束关系。-Most r