搜索资源列表
处理图像分类的最小二乘法svm工具箱
- 这是处理图像分类的最小二乘法svm工具箱,里面有详细的使用说明,功能强大,欢迎下载使用。,This is the deal with image classification of least squares SVM toolbox, which has detailed instructions and powerful are welcome to download.
svmTrain
- 一个matlab平台应用的svm工具箱,该工具箱包括了二种分类,二种回归,以及一种一类支持向量机算法-A matlab platform applications svm toolbox, the kit includes two kinds of classification, two kinds of return, and a one-class support vector machine algorithm
CKPCA-HOG-SVM
- 为了准确地对监控场景中的运动目标进行语义上的分类,提出了一种基于聚类的核主成分分析梯度方向直方图和二又决策树支持向量机的运动目标分类算法。-In order to accurately monitor the movement of scene targets semantic classification, the clustering based on kernel principal component analysis of gradient direction histograms,
SVM
- SVM(支持向量机),二分类,多分类,多分类一对一,多分类一对多训练及测试matlab代码-SVM two classes muticlasses mutioneagainstone mutioneagainstall matlab code
SVM-hssvm1.0.1
- HSSVM是一个用超球SVM(Hyper-Sphere Support Vector Machines)模型求解多分类问题的工具包,采用Java语言实现。开发该程序的主要目的,是利用超球SVM求解模型代替传统上借助于解二分类问题的经典SVM模型来求解多分类问题。本文将论述该程序的主要实现细节,包括相关算法及设计原理的描述。-HSSVM is an ultra ball SVM (Hyper-Sphere Support Vector Machines) to solve multi-classi
libsvm-mat-2.89-3
- SVM的多分类问题MATLAB工具包。传统的SVM只支持二分类问题,MATLAB自带的工具包也存在同样的问题。可以在setpath中导入此包,便可轻松将SVM问题扩展到多分类的层面。-A matlab toolkit to solving multi-classification problems based on svm. Traditional svm and the matlab toolkit svmtrain can only support for bi-classificati
lssvmMATLAB
- 最小二乘支持向量机,采用matlab编写,可以直接使用,SVM是经典的分类和预测算法。-Squares support vector machine, using matlab prepared, can be used directly, SVM is the classic classification and prediction algorithms.
sbxrwrxv
- 采用波束成形技术的BER计算,zcZuvVR参数可以实现模式识别领域的数据的分类及回归,是机器学习的例程,在MATLAB中求图像纹理特征,dvGzQFM条件实现了对10个数字音的识别,包括最小二乘法、SVM、神经网络、1_k近邻法。- By applying the beam forming technology of BER zcZuvVR parameter You can achieve data classification and regression pattern recogni
hbxqtynf
- 包括调制,解调,信噪比计算,关于神经网络控制,包括最小二乘法、SVM、神经网络、1_k近邻法,外文资料里面的源代码,MIMO OFDM matlab仿真,可以实现模式识别领域的数据的分类及回归。- Includes the modulation, demodulation, signal to noise ratio calculation, On neural network control, Including the least squares method, the SVM, neura
uceftdce
- 欢迎大家下载学习,用MATLAB实现的压缩传感,Relief计算分类权重,包括最小二乘法、SVM、神经网络、1_k近邻法,研究生时的现代信号处理的作业,在MATLAB中求图像纹理特征。-Welcome to download the study, Using MATLAB compressed sensing, Relief computing classification weight, Including the least squares method, the SVM, neural n
xhykahyc
- 可以得到很精确的幅值、频率、相位估计,可以动态调节运行环境的参数,包括最小二乘法、SVM、神经网络、1_k近邻法,Matlab实现界面友好,ICA(主分量分析)算法和程序,包括数据分析、绘图等等,可以实现模式识别领域的数据的分类及回归。-You can get a very accurate amplitude, frequency, phase estimation, Can dynamically adjust the parameters of the operating environm
mvtzbbab
- 使用起来非常方便,包括最小二乘法、SVM、神经网络、1_k近邻法,结合PCA的尺度不变特征变换(SIFT)算法,一些自适应信号处理的算法,Relief计算分类权重,关于小波的matlab复合分析,部分实现了追踪测速迭代松弛算法。- Very convenient to use, Including the least squares method, the SVM, neural networks, 1 _k neighbor method, Combined with PCA scale in
eynskc
- ICA(主分量分析)算法和程序,时间序列数据分析中的梅林变换工具,Matlab实现界面友好,合成孔径雷达(SAR)目标成像仿真,包括最小二乘法、SVM、神经网络、1_k近邻法,Relief计算分类权重,LDPC码的完整的编译码。- ICA (Principal Component Analysis) algorithm and procedures, Time series data analysis Mellin transform tool, Matlab to achieve user-f
knn-softsvm
- knn,最小二乘,softsvm分类器的matlab实现,以及简单的交叉验证等-knn, least squares, soft svm classifier matlab implementation, and simple cross-validation, etc.
matrbf
- 在MATLAB中调用核函数为rbf的svm,通过训练数据对测试数据进行分类(仅适用于二分类数据)(In MATLAB, use the kernel function rvf svm, through the training data on the test data classification (only for two categories of data))
SVM
- 一个MATLAB语言写的SVM算法测试例,便于理解SVM二分类方法的实际含义(A MATLAB language written SVM algorithm test case, easy to understand the SVM two classification method of practical significance)
LSSVMlabv1_8_R2009b_R2011a
- 最小二乘支持向量机,功能(实现回归预测和分类)(least squares support vector machine)
线性分类器
- 该程序能够实现对于一个样本完成感知机,最小二乘法,凸优化方法解决SVM和matlab自带函数解决SVM的四种程序,并且通过修改部分参数可以完成不同效果。(The program can be achieved for a complete sample perceptron, least squares method, convex optimization method to solve SVM and MATLAB with four program function to solve th
支持向量机算法
- 能够实现二分类的支持向量机matlab程序,例子较为全面
SVM 多分类
- 通过一对多,和多对一的方式,将二分类svm转化成多分类分类器(Through the way of one to many and many to one, the two classification SVM is transformed into a multi classification classifier)