当前位置:
首页
资源下载

搜索资源 - The handwritten digits
搜索资源列表
-
1下载:
CUDA应用:在CUDA上实现神经网络,识别手写数字,the implementation of a neural network with CUDA. Neural Network for Recognition of Handwritten Digits
-
-
0下载:
实现0-9个手写数字的识别 使用了多种方法:最近邻、势函数、神经网络、贝叶斯分类器-To achieve recognition handwritten digits 0-9 using a variety of methods: the nearest neighbor, potential function, neural networks, Bayesian classifier
-
-
0下载:
An Efficient Feature Extraction Algorithm for
the Recognition of Handwritten Arabic Digits
-
-
0下载:
This directory contains the original version of the database
"Optical recognition of handwritten digits" by E.Alpaydin and
C.Kaynak, Department of Computer Engineering, Bogazici University,
80815 Istanbul, Turkey.
-
-
0下载:
This project provides matlab class for implementation of convolutional neural networks. This networks was created by Yann LeCun and have sucessfully used in many practical applications, such as handwritten digits recognition, face detection, robot na
-
-
2下载:
针对10个手写数字的识别问题,设计了一个BP神经网络,使它能够正确识别10个数字。-Against the 10 handwritten numeral recognition problem, a BP neural network is designed so that it can correctly identify the 10 digits.
-
-
0下载:
图象处理 模式识别 多种分类方法(最临近匹配分类器、Bayes分类器、线性函数分类、非线性函数分类、神经网络分类)识别0-9数字 手写数字与数字图片,包括设计训练样品库、可以选择多种分类器来识别识别0-9这十个阿拉伯数字,包括临时手写的数字,也包括图片中的数字
-Pattern recognition image processing a variety of classification (the most close to matching classifier, Bay
-
-
1下载:
采用神经网络实现手写识别的一种方法,建立Bp神经网络,采用快速训练方法,可快速完成一类相关手写字体的模式识别,识别率较高,当字体变化较大识别率降低时,可重新训练具有较强的适应性。实验证实本方法较好实现了手写字符识别,但也存在识别速度较慢,有时训练不收敛等缺点-Handwriting recognition using neural network is a way to establish Bp neural network, using fast training methods, and c
-
-
0下载:
基于VC的各种聚类和分类算法程序。
手写数字或者打开已有的手写数字图像后,在右视图空白处,单击鼠标左键,激活右视图,选择菜单中的各种分类算法,可以对手写数字进行分类。有模板匹配分类器、Bayes分类器、线性函数分类法、非线性分类法、神经网络分类器。
在左视图上单击鼠标左键,可获得3种数据源:标准数字聚类、手画图形聚类、位图文件分析聚类。可以进行特征提取、模糊聚类和遗传算法。-VC-based clustering and classification algorithm for a
-
-
0下载:
Matlab binary digits for handwritten character recognition
-
-
0下载:
手写数字识别:手写数字或者打开已有的手写数字图像后,在右视图空白处,单击鼠标左键,激活右视图,选择菜单中的各种分类算法,可以对手写数字进行分类-Handwritten numeral recognition: handwritten handwritten numbers or open an existing digital image, the blank space in the right view, click the left mouse button to activate the
-
-
0下载:
Handwriting Recognition using Kernel Discriminant Analysis.
Demonstration of handwritten digit recognition using Kernel Discriminant Analysis and the Optical Recognition of Handwritten Digits Data Set from the UCI Machine Learning Repository.
-
-
0下载:
手写体数字的识别。使用的是BP神经网络的方法,自己看着能不能用吧,我也就是下个资源-Handwritten digits recognition. Using BP neural networks, their look can use it, and I was the next resource
-
-
0下载:
手写数字识别程序
1、 在左边的白色框中长按鼠标左键手动输入数字,数字最大个数小于10个;
2、 输入的每个数字要求是连续的;
3、 两个不同数字之间不要出现笔画重叠;
4、 输入数字的速度不要太快(视个人计算机速度而定);
5、 输入字体不要太小;
6、 识别结果按照手写数字从左到右依次排列。
-Handwritten numeral recognition program, in the left white box, long click the left mo
-
-
0下载:
手写体数字的细化算法实现,适合数字图像处理方向的初学者学习-The handwritten digits refinement algorithm
-
-
0下载:
手写体数字识别的训练数据库(MNIST)。
收集了500多位实验者的共60000个样本。-THE MNIST DATABASE of handwritten digits
Four files are available on this site:
train-images-idx3-ubyte.gz: training set images (9912422 bytes)
train-labels-idx1-ubyte.gz: training set label
-
-
0下载:
斯坦福大学的手写字符图像库,方便大家免于读写idx1-ubyte和idx3-ubyte文件。数据包括训练图像60000幅,测试图像10000幅,图像大小为20*20;以及存储图像及其对应类别的xml文件,并写好了opencv读写方法的文档。-THE MNIST DATABASE of handwritten digits.It includes 60000 training images and 10000 testing image.And it contains the xml files
-
-
0下载:
用BP算法设计分类器,实现对UCI 机器学习数据库中0-9 这10 个手写体数字的训
练和测试。-BP algorithm designed classifier, to achieve the UCI machine learning database 0-9 10 handwritten digits training and testing.
-
-
0下载:
用Skeletonization剪枝方法精简BP神经网络结构,提高网络泛化能力,对手写数字进行识别。-Skeletonization pruning method using BP neural network architecture to streamline and improve the network generalization ability of the handwritten digits recognition.
-
-
0下载:
介绍了在提取穿越次数特征、粗网格特征以及密度特征提取的基础上应用SVM进行手写体阿拉伯数字识别的方法。-Introduced the extraction across a number of features, coarse grid and density feature extraction on the basis of the application of SVM method for handwritten digits recognition.
-