当前位置:
首页
资源下载

搜索资源 - arma identification
搜索资源列表
-
1下载:
自然激励下建筑结构的模态参数识别,首先通过自然激励技术(next)得到结构的自由响应,然后由自回归滑动平均(arma)方法识别模态参数。-natural incentive structures under the modal parameter identification, First through natural incentive Technology (next) to be free to respond to the structure, then autoregressive
-
-
0下载:
ARMA identification modal parameter
-
-
1下载:
ARMA模态参数识别,振动信号处理应用与研究,应用MATLAB编程实现模态参数提取研究-ARMA modal parameter identification and vibration signal processing applications and research, using MATLAB programming to achieve the modal parameter extraction of
-
-
1下载:
ARMA模型时序法模态参数识别,可识别频率、阻尼比和振型系数。-The ARMA model timing Law modal parameter identification
-
-
0下载:
实现了二维的ARMA/AR时序模型,可用于结构模态识别。-ARMA/AR timing of the two-dimensional model can be used to structure modal identification.
-
-
1下载:
张贤达《现代信号处理》第5章第6节的仿真,涉及到SVD-TLS、PODE和Q切片法等算法,能实现非高斯信号的ARMA模型辨识-Zhang Xian Da " Modern Signal Processing" Chapter 5, Section 6 of the simulation, involving SVD-TLS, PODE and Q slicing method algorithm can achieve non-Gaussian signal ARMA mode
-
-
0下载:
这是一个快速用于计算ARMA时间序列的模型识别和求出模型残差的函数的范例-This is a fast time series for calculating ARMA model identification and model residuals calculated example of a function
-
-
0下载:
基于辨识ARMA模型的野值剔除方法与卡尔曼滤波修正算法-ARMA model identification methods and eliminate outlier correction algorithm based on Kalman filter
-
-
0下载:
ARMA时间序列模型预测,内附详解,可以作为参数识别的参考程序。-ARMA time series model predicts that included Detailed can be used as a reference parameter identification procedure.
-
-
0下载:
Disturbance & ARMA Model ....
System Identification
-Disturbance & ARMA Model ....
System Identification
-
-
0下载:
根据输入输出数据,进行ARMA定阶、辨识,可用于SISO的最小方差控制系统性能评价-According to the input and output data, ARMA order determination, identification, control systems can be used to minimize the variance of performance uation SISO
-
-
1下载:
ARMA的MATLAB代码,包含自动定阶和参数识别等,代入数据可直接用,不坑。-ARMA MATLAB code, including automatic order and parameter identification, etc., can be used directly into the data, not pit.
-
-
1下载:
用于研究时间序列的方法有AR(自回归)、MA(滑动平均)、ARMA(自回归滑动平均)这三种模型。而对于一个平稳时间序列预测问题,首先要考虑的是寻求与它拟合最好的预测模型。而模型的识别与阶数的确定则是选择模型的关键。
1.用 迭代生成1000个点(前2个点自定义)。
2.在这1000个点中取800点进行时间序列分析建立合适的模型。
3.利用剩余的200个点进行模型预测,并看其是否匹配,最后校正。
-Methods for studying time series are AR (a
-
-
1下载:
ARMA模型:用AIC方法定阶,以及模型参数识别。(ARMA model: the order of the AIC method, and the parameter identification of the model.)
-
-
3下载:
递推最小二乘参数辨识,适用于ARMA模型,锂电池等效电路模型参数辨识时使用(RLS for parameter identification)
-