搜索资源列表
三层BP神经网络逼近非线性函数
- 内容如题,其中BP神经网络的建立采用自编函数,而非Matlab自带的神经网络建立函数
BP-neural-network-
- 该程序是用matlab语言实现应用BP神经网络逼近非线性函数,文档中包括了matlab的m文件,验证文件还有说明文件。-The program is matlab language on BP neural network approach nonlinear function, the document includes matlab m-files, verify file as well the documentation
bpsinx
- 用bp神经网络进行函数逼近,逼近的函数为y=sinx,拟合效果不错-Bp neural network with function approximation, approximation function y = sinx, the effect of a good fit
hanshubijin
- 使用BP神经网络实现函数的逼近并附带着fig文件,还有一个简单的感知器-The use of BP neural network function approximation with a document with a fig, as well as a simple perceptron
BP
- 应用BP神经网络对两个函数进行非线性逼近,并给出MATLAB源程序,还对结果进行了分析。-Application of BP neural network of the two non-linear function approximation, and gives MATLAB source code, but also on the results are analyzed.
bpbijin
- 这是用BP神经网络实现函数逼近的MATLAB源程序。-This is by BP neural network function approximation of MATLAB source.
bpnet
- bp神经网络算法程序,仿真逼近一个函数,内含详细注解,适合初学者。-it is a program of bp neural network algorithm ,its function is simulating approximation of a function. it contains detailed notes, and suitable for beginners.
BP1214
- BP神经网络的逼近函数源代码 数学建模-BP neural network approximation function of the source code for mathematical modeling
bp
- 基于BP神经网络算法的函数逼近,利用matlab实现BP算法逼近任意非线性函数-BP neural network algorithm based on function approximation, using matlab to achieve BP algorithm approximate any nonlinear function
bp-rbf-neural-networks
- 介绍如何通过matlab使用bp神经网络和rbf神经网络来逼近非线性函数-Describes how to use matlab bp neural network and rbf neural networks to approximate nonlinear functions
BP2
- visual c++实现BP神经网络,可以绘出误差曲线,逼近曲线-visual c++ to achieve BP neural network, can draw the error curve, approximation curve
BP神经网络
- 利用BP神经网络去做函数逼近和解决分类问题(BP neural network is used to do function approximation and solve classification problem)
BP神经网络逼近(matlab程序)
- Bp神经网络MATLAB小程序,相当实用,推荐实用(Neurofuzzy design and model construction of nonlinear dynamical processes from data)
BPmatlab
- BP神经网络算法实现例子,多层感知机,对非线性函数逼近(neural network and Multilayer perceptron)
BP
- 利用BP网络逼近对象y(k)=u(k)^3+y(k-1)/(1+y(k-1)^2)。采样时间取1ms。输入信号为u(k)=0.5sin(6*pi*t)。(Approximate object y (k), =u (k), ^3+y (k-1) / (1+y (k-1) ^2) using BP networks. Sampling time is 1ms. The input signal is u (k) =0.5sin (6*pi*t).)
BP
- 用代码(非工具箱)实现BP神经网络对含有随机噪声的sin函数的逼近(The approximation of sin function with random noise by BP neural network with code (non toolbox))
07 神经网络与深度学习
- 人工神经网络(Artificial Neural Networks,ANN)系统是 20 世纪 40 年代后出现的。它是由众多的神经元可调的连接权值连接而成,具有大规模并行处理、分布式信 息存储、良好的自组织自学习能力等特点。BP(Back Propagation)算法又称为误差 反向传播算法,是人工神经网络中的一种监督式的学习算法。BP 神经网络算法在理 论上可以逼近任意函数,基本的结构由非线性变化单元组成,具有很强的非线性映射能力。(The Artificial Neural Network
BP,RBF
- BP神经网络作为一种前馈性的神经网络,RBF神经网络由于其独特的联想记忆功能,常常用来用于识别和优化计算方问题上。分别对这两种算法用于对逼近非线性函数进行编程,观察其拟合情况后,用其他未训练的样本数据进行泛化能力分析。(BP neural network is a feed-forward neural network. RBF neural network is often used to identify and optimize the computation problem due to
001
- BP神经网络的MATLAB仿真 显示学习逼近和学习曲线(BP Artificial Neural Network)
神经网络编程_源代码
- 建立神经网络,运用神经算法求值逼近所求结果。(The neural network is established and the result is approximated by the neural algorithm.)