当前位置:
首页
资源下载

搜索资源 - classification and regression trees
搜索资源列表
-
0下载:
SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping
h: X --> Y
using labeled training examples (x1,y1), ..., (xn,yn). Unlike regula
-
-
1下载:
SVMstruct is a Support Vector Machine (SVM) algorithm for predicting multivariate or structured outputs. It performs supervised learning by approximating a mapping
h: X --> Y
using labeled training examples (x1,y1), ..., (xn,yn). Unlike reg
-
-
0下载:
a document about Classification and Regression Trees
-
-
0下载:
《Software for Flexible Bayesian Modeling and Markov Chain Sampling》是机器学习领域专家Neal编写的用于Bayesian和马尔可夫链Linux下的C语言工具包。很有名,也很权威。
-This software supports Bayesian regression and classification models based on neural networks and Gaussian processes, and Ba
-
-
0下载:
Classification and Regression Tree的ppt介绍,简称CART,即分类回归树。-Ppt Classification and Regression Tree of the introduction, referred to as CART, the classification and regression trees.
-
-
1下载:
MATLAB cross-validation tool for classification and regression v0.1
FEATURES:
+ K-fold cross validation.
+ Arbitrary train and prediction functions with parameters can be used.
+ Arbitrary loss function can be used.
+ Wrappers for
-
-
1下载:
使用matlabR2007a编写的分类回归树代码,已经调试,可以运行-Prepared using matlabR2007a code classification and regression trees have been debugging, you can run
-
-
0下载:
数据挖掘教程:分类与回归树模型的教程介绍-Classification and regression trees documentation
-
-
2下载:
该计算统计学工具箱包含倒靴法,分类和回归树,空间点过程,MCMC以及其他很多算法。-This toolbox contains functions for bootstrap, jackknife, classification and regression trees, projection pursuit, spatial point processes, MCMC, and many others.
-
-
0下载:
Decision tree builds classification or regression models in the form of a tree structure. It breaks down a dataset into smaller and smaller subsets while at the same time an associated decision tree is incrementally developed. The final result is a t
-
-
0下载:
包括无监督和监督的机器学习技术
• K-means and other clustering tools
• Neural Networks
• Decision trees and ensemble learning
• Naï ve Bayes Classification
• Linear, logistic and nonlinear regression-Highlights include unsu
-
-
0下载:
随机森林是由多棵树组成的分类或回归方法。主要思想来源于Bagging算法,Bagging技术思想主要是给定一弱分类器及训练集,让该学习算法训练多轮,每轮的训练集由原始训练集中有放回的随机抽取,大小一般跟原始训练集相当,这样依次训练多个弱分类器,最终的分类由这些弱分类器组合,对于分类问题一般采用多数投票法,对于回归问题一般采用简单平均法。随机森林在bagging的基础上,每个弱分类器都是决策树,决策树的生成过程中中,在属性的选择上增加了依一定概率选择属性,在这些属性中选择最佳属性及分割点,传统做法
-
-
1下载:
随机森林算法的构造过程:1、通过给定的原始数据,选出其中部分数据进行决策树的构造,数据选取是”有放回“的过程,我在这里用的是CART分类回归树。
2、随机森林构造完成之后,给定一组测试数据,使得每个分类器对其结果分类进行评估,最后取评估结果的众数最为最终结果-Random Forest algorithm construction process: 1, by a given raw data, which part of the decision tree data structu
-