搜索资源列表
pso530
- 粒子群优化算法(PSO)是一种进化计算技术(evolutionary computation),由Eberhart博士和kennedy博士于1995年提出 (Kennedy J,Eberhart R. Particle swarm optimization.Proceedings of the IEEE International Conference on Neural Networks.1995.1942~1948.)。源于对鸟群捕食的行为研究。粒子群优化算法的基本思想是通过群体中个体
spea2_matlab_code
- spea2多目标进化算法对两个目标的多目标优化问题的测试-spea2 multi-objective evolutionary algorithm on the two goals of testing multi-objective optimization problem
Othello
- 使用java编写的GUI的黑白棋游戏,搜索算法采用经典的博弈树,并在此基础上做了大量优化,我的评估函数采用了Simon M. Lucas 和 Thomas P. Runarsson 在其合作发表的 Temporal Difference Learning Versus Co-Evolution for Acquiring Othello Position Evaluation 中通过对比即时差分学习(TDL,Temporal Difference Learning)和协同进化(CEL,Co-
java_evolutionary_algorithms
- 用Java实现的进化算法包。包括遗传算法、粒子群算法、memetic算法和进化策略算法。-evolutionary-algorithm Evolutionary Algorithm package implemented using Java. The package serves as a foundation class library, supporting the implementation many variants of Evolutionary Algorith
Othello
- 使用java編寫的GUI的黑白棋遊戲-GUI using java prepared Riversi games, search algorithms using classical game tree, and on this basis have done a lot of optimization, the evaluation function I used Simon M. Lucas and Thomas P. Runarsson published in its Temporal
MindMap-(CoEA)
- The concept of Co-Evolutionary Algorithm
Co-Evolutionary-Algorithm
- Presentation of Co-evolutionary Algorithm
Multi-step-prediction-of-chaotic
- Multi-step-prediction of chaotic time series based on co-evolutionary recurrent neural network 协同进化递归神经网络的多步混沌时间序列预测-This paper proposes a co-evolutionary recurrent neural network (CERNN) for the multi-step-prediction of chaotic time series, it
MLCC
- 多层次合作型协同演化算法,自适应分组规模的方法首次在CC中被应用-Multi-level cooperative co-evolutionary algorithms, adaptive packet size approach was first applied in the CC
coevolutionary-algorithm
- 协同进化算法[I5] (Co-Evolutionary Algorithm, CEA)是研究者在协同进化理论基础 上提出的一类新算法。这类算法强调了种群与环境之间、种群与种群之间在不断进化过 程中的协调。与传统进化算法相比较,CEA可以对待求问题解空间进行合理的种群划分, 对较大规模的问题求解能有效跳出局部最优点,寻找到更好的优化解虽然CEA研 究起步较晚,但由于它的优越性,目前己成为当前进化计算的一个研究热点。 -Existing coevoluti
(muPlambda)-co-evolutionary-DE
- 将协同进化思想与微分进化算法结合,为一种改进的多种群共同进化微分进化算法-The idea of co-evolution differential evolution algorithm combined for an improved multi-population co-evolution differential evolution algorithm
DECGA
- 双精英协同进化遗传算法借鉴了精英策略和协同进化的思想,选择两个相异的、高适应度的个体(精英个体)作为进化操作的核心,两个精英个体分别按照不同的评价函数来选择个体,组成各自的进化子种群.两个子种群分别采用不同的进化策略,以平衡算法的勘探和搜索能力。-Double elite co-evolutionary genetic algorithm to learn the elite strategy and the thought of cooperative coevolution, choose