搜索资源列表
c.zip
- 以邻接多重表为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出各种遍历下的结点访问序列和相应生成树的边集,To the adjacent multi-table for the storage structure, to achieve connectivity of undirected graph depth-first and breadth-first traversal. To user-specified node as a starting poi
tubianli
- 以邻接多重表为存储结构,实现连通无向图的深度优先和广度优先遍历。以用户指定的结点为起点,分别输出每种遍历下的结点访问序列和相应生成树的边集。-To adjacent multi-table storage structure for connectivity undirected graph depth-first and breadth-first traversal. User-specified node as a starting point, respectively, under t
PolyGon
- 通过实现光栅图形学经典的多边形填充算法,深入理解光栅图形学的原理。实现了逐点判断法、扫描线算法、边缘填充算法-Raster graphics by implementing the classical polygon filling algorithm, in-depth understanding of the principles of raster graphics. Judge realized point by point method, scan line algorithms, e
CannyEdgeDetection
- 使用canny边缘提取算法提取八位深度图像的边缘-Using the canny edge detection algorithm for image edge extraction depth of 8
FPGA_FIFO
- 使用Verilog编写的同步FIFO,可通过设置程序中的DEPTH设置FIFO的深度,FIFO_WRITE_CLOCK上升沿向FIFO中写入数据, FIFO_READ_CLOCK上升沿读取数据。本程序对FIFO上层操作简单实用。-Prepared by the use of Verilog synchronous FIFO, through the setup program in the FIFO depth DEPTH settings, FIFO_WRITE_CLOCK rising
ApplicationsOfDepth-FirstTraversal
- 1. 用DFS判断一个无向图是否是连通图; 2. 为有向图的边分类,将它们的边分为前向边、后向边和交叉边; 3. 用DFS和点消除求有向图的拓扑排序; 4. 判断有向图是不是强连通图,若不是,求强连通分量; 5. 判断有向图是不是半连同图; 6. 判断有向图是不是单连通图; 7. 判断无向图是不是双连通图。 通过以上编程对DFS的应用,进一步了解DFS的算法及它所代表的算法思想。 -1. Using DFS to test if a given undirecte
tu_bianli
- 利用C语言实现数据结构中的图的建立,根据边的数目建立图,并用深度遍历法遍历图等-The use of C language data structure diagram of the establishment, in accordance with the number of edge-building plans, and the depth of traversal method traverse map
redundantpaths
- c pgm to find redundant paths in a graph.Many fault-tolerant network algorithms rely on an underlying assumption that there are possibly distinct network paths between a source-destination pair. Given a directed graph as input, write a program that u
Accelerated.C.2.plus
- As you develop your skills in C++, it becomes increasingly important to separate essential information from hype and glitz, and to find the in-depth content you need in order to grow. The C++ In-Depth Series provides the tools, concepts, techniques,
depthedge
- code for depth edge detection algorithm
depthfirstsearch
- 深度优先搜索所遵循的搜索策略是尽可能“深”地搜索图。在深度优先搜索中,对于最新发现的结点,如果它还有以此为起点而未搜过的边,就沿着边继续搜索下 去。当结点v的所有边都已被探寻过,搜索将回溯到发现结点v有那条边的始结点。这一过程一直进行到已发现从源结点可达的所有结点为止。如果还存在未被发现 的结点,则选择其中一个作为源结点并重复以上过程,整个过程反复进行直到所有结点都被发现为止-Followed by depth-first search strategy is to search "
shendusousuo
- 深度搜索,可将边缘断点连接起来,多用于图像分割中和边缘检测结合使用-Depth of search, could be the edge connecting the breakpoints are used for image segmentation and edge detection used in conjunction
main
- Descr iption: 采用邻接表表示有向图,完成图的创建、图的深度优先遍历、图的广度优先遍历操作。其中图的顶点信息是字符型,图中顶点序号按字符顺序排列,边的输入按照边的顶点序号从小到大的顺序排列,如下图的边的输入顺序为0 1,0 2,0 3,1 2,1 3,2 4,3 4共七条边,邻接表的边结点采用头插法。本输入样例中所用的图如下所示: Input Format: 第一行输入两个值,第一个是图中顶点的个数,第二个是图中边的条数 第二行输入各顶点的信息,即输入每个顶点字
main
- 采用邻接矩阵表示无向图,完成图的创建、图的深度优先遍历、图的广度优先遍历操作。其中图的顶点信息是字符型,图中顶点序号按字符顺序排列。本输入样例中所用的图如下所示: Input Format: 第一行输入两个值,第一个是图中顶点的个数,第二个是图中边的条数 第二行输入各顶点的信息,即输入每个顶点字符 第三行开始输入每条边,每条边的形式为两个顶点的序号,中间以空格隔开,输入完一条边换行 Output format: 首先输出图的顶点信息,输出完毕换行 接着输出图的邻
GraphTraversal
- 使用c语言,利用数据结构思想建立图的邻接表的存储结构,实现无向图的深度优先遍历和广度优先遍历。以用户指定的顶点为起点,分别输出每种遍历下的顶点访问序列。 设图的顶点不超过30个,每个顶点用一个编号表示(如果一个图有N个顶点,则它们的编号分别为1,2,…,N)。通过输入图的全部边输入一个图,每条边是两个顶点编号对,可以对边依附顶点编号的输入顺序作出限制(例如从小到大)。 -Using c language data structure used to establish the adjac
code
- 深入研究适合该图像的预处理、二值分割、边缘提取和几何形状判断方法,重点研究针尖倒装、弯曲和倒刺等不合格针尖的自动检 测方法,并基于C++ Builder平台使用C++面向对象技术实现上述图像处理过程。 -Depth for the image preprocessing, binary segmentation, edge detection and geometric methods of shape judgments, focusing on needle flip, bend a
edge-detection
- Edge detection We propose a edge detection framework that takes as its input a xation (a point location) in the scene and outputs the region containing that xation. The xated region is segmented in terms of the area enclosed by the \optim
rcnn-depth-master
- datasets for edge detection
hed-master
- We develop a new edge detection algorithm, holistically-nested edge detection (HED), which performs image-to-image prediction by means of a deep learning model that leverages fully convolutional neural networks and deeply-supervised nets. HED automat
rcnn-depth-master
- 反锐化掩膜技术(Unsharp Masking,UM)又称为模糊蒙片处理,是一种经典的图像边缘增强算法,提高图像的高频分量部分来增强其视觉效果[18,19].反锐化掩模技术最早是应用于摄影技术中,以增强图像的边缘和细节。光学上的操作方法是将聚焦的正片和散焦的负片在底片上进行叠加,结果是增强了正片高频成份,从而增强了轮廓,散焦的负片相当于“模糊”模板(掩模),它与锐化的作用正好相反,因此,该方法被称为反锐化掩模法。(The sharpenmembrane Technology (Unsharp M