当前位置:
首页
资源下载

搜索资源 - face recognition kernel
搜索资源列表
-
1下载:
可以用于人脸识别的核ICA算法,在ICA基础上改造过来的。-can be used for nuclear ICA face recognition algorithm based on the ICA transformation overnight.
-
-
0下载:
Face Recognition Using Kernel Direct Discriminant Analysis Algorithms
and Matlab source codes for the kernel direct discriminant analysis (KDDA) -Face Recognition Using Kernel Direct Disc riminant Analysis Algorithms and Matlab sourc e codes for th
-
-
0下载:
kpca 用于人脸识别等的matlab源码,KPCA for face recognition matlab source, etc.
-
-
0下载:
改进的核函数算法及其在人脸识别中的应用研究,很好的东东!,Kernel function to improve the algorithm and its application in face recognition research
-
-
0下载:
Face Recognition, Face Detection, Lausanne Protocol, 3D Face Reconstruction,
Principal Component Analysis, Fisher Linear Discriminant Analysis,
Locality Preserving Projections, Kernel Fisher Discriminant Analysis,Face Recognition, Face Detection, L
-
-
0下载:
主要介绍了各种关于人脸识别的核心算法,如LGBP,AdaBoost,SV的Kernel判别及基于特定人脸子空间-Introduces a variety of core face recognition algorithms, such as LGBP, AdaBoost, SV and the Kernel discriminant subspace based on a specific face
-
-
1下载:
核直接线性判别方法:图像及高维复杂数据模式识别的利器!内有方法开发的相关文档说明!经典!-The matlab functions implement the methods presented in the paper [TNN_KDDA02.pdf]
Juwei Lu, K.N. Plataniotis, and A.N. Venetsanopoulos, "Face Recognition Using
Kernel Direct Discriminant Anal
-
-
1下载:
pca+fisher是将核函数应用到人脸识别研究中去-pca+ fisher is the kernel function is applied to face recognition research go
-
-
0下载:
kernel methods for face recognition
-
-
1下载:
KPCA与SVM共同用于人脸识别 SVM提高了分类效果 KPCA是一种借鉴SVM中核函数的一种较好的特征提取方法-KPCA and SVM for face recognition SVM together to improve the classification results from KPCA is a kernel function in SVM a better feature extraction method
-
-
0下载:
基于核函数的主分量分析法源代码,可用于人脸识别-Kernel-based principal component analysis source code, can be used for face recognition
-
-
0下载:
Kernel Discriminant Learning with Application to Face Recognition
-
-
0下载:
一个号的核主成分分析的人脸识别算法,整个程序非常的清楚明了!-A number of kernel principal component analysis for face recognition algorithms, the whole process is very easy to understand!
-
-
0下载:
提出了基于特征融合和模糊核判别分析(FKDA)的面部表情识别方法。首先,从每幅人脸图像中手工定
位34个基准点,作为面部表情图像的几何特征,同时采用Gabor小波变换方法对每幅表情图像进行变换,并提取基
准点处的Gabor小波系数值作为表情图像的Gabor特征;其次,利用典型相关分析技术对几何特征和Gabor特征进
行特征融合,作为表情识别的输人特征;然后,利用模糊核判别分析方法进一步提取表情的鉴别特征;最后,采用最
近邻分类器完成表情的分类识别。通过在JAFFE国际表情数据库和
-
-
0下载:
二维照片的人脸识别对光照、姿态和化妆等因素很敏感,故提出了一种将三维局部二值模式(3DLBP)和核享,1剐分析(KDA)相结合的三维人脸识剐方法.采用3DLBP描述人脸深度图像的特征,高斯核函数KDA 作为分类器,使用Chi平方统计改进高斯核函数、采用FRGC v2.0中2003春季采集的三维人脸库进行实验.实验结果表明,该
方法在每人2个训练样本时,识别率为91.8%,而PCA和3DLBP的识别率分别为60.4%和78.3%;当每人的训练样本数增至6个时,识别率为98.4%,而PCA和3D
-
-
6下载:
在ORL或Yale标准人脸数据库上完成模式识别任务。用PCA与基于核的PCA(KPCA)方法完成人脸图像的重构与识别试验.
-Or Yale in the ORL face database, complete the standard pattern recognition tasks. With the PCA and kernel-based PCA (KPCA) method to complete the reconstruction of face image and reco
-
-
0下载:
In this paper, I present a novel hybrid face recognition approach based on a convolutional neural architecture, designed to robustly detect highly variable face patterns. With the weights of the trained neural networks there are created kernel window
-
-
1下载:
模式识别课程作业,pca和kpca,以及一个人脸可。其中kpca的核函数是多项式。-Pattern Recognition course assignments, pca and kpca, and a person can face. Where the kernel function is polynomial kpca.
-
-
0下载:
face recognition using PCA
-
-
0下载:
本文针对人脸图像的特点,选取一组Gabor 小波核,并用这组Gabor 小波核对人脸图像进行Gabor 小波变换,提取人脸
图像的有效信息。在此基础上,用2DPCA 对Gabor 小波提取的
数据矩阵进行降维,最后用最近邻法对人脸进行分类。-In this paper, the characteristics of face images, select a set of Gabor wavelet kernel, and check with this set of Gabor wav
-