搜索资源列表
wasalibs_bundle20020828
- java编写的分类算法实现,包括svm,knn等多种基于机器学习的分类算法。-java prepared by the classification algorithm, including svm. knn and other machine learning-based classification algorithm.
deboor-cox.rar
- 目的:运用强化学习!多分类器集成!降维方法等最新计算机技术,结合细胞病理知识,设计制作/智能化肺癌细胞病理图像诊断系统0"方法:采集细胞图像,运用基于强化学习的图像分割法将细胞区域从背景中分离出来 运用基于样条和改进2方法对重叠细胞进行分离和重构 提取40个细胞特征用于贝叶斯!支持向量机!紧邻和决策树4种分类器,集成产生肺癌细胞分类结果 建立肺癌细胞病理图库,运用基于等降维方法对细胞进行比对,给予未定型癌细胞分类"结果:/智能化肺癌细胞病理诊断系统0应用于临床随机1200例肺
Digit-recognizer---knn-a-svm
- matlab中分别使用knn(k近邻)与svm(支持向量机)实现的对手写数字识别的二分类器-Digit recognizer(KNN and SVM) developed in matlab
text-classification
- 分别使用KNN,NB和SVM算法实现的分本分类的作业,内含数据集合以及详细的实验报告。-Text classification with method of KNN,NB and SVM。
mill
- 包含了很多分类算法,有SVM,knn,决策树等,还有文档说明-Contains a lot of classification algorithms, there is SVM, knn, decision tree and so on, have documented
ToolBox
- matlab图像处理工具相,使用了主成分分析,ANN,SVM等方法。-This toolBox used in the image processing(feature extraction and classification) PCA,LDA,ICA,DCT,RBF,RBE,GRNN,KNN,minimum distance,SVM, and others
The_Status_Quo_of_Machine_Learning_of_Artificial_I
- 机器学习是人工智能的一个子领域,是人工智能中非常活跃且范围甚广的主要核心研究领域之一,也是现代智能系统的关键环节和瓶颈。机器学习吸取了人工智能、概率统计、计算复杂性理论、控制论、信息论、哲学、生理学、神经生物学等学科的成果,主要关注于开发一些让计算机可以自动学习的技术,并通过经验提高系统自身的性能。本文介绍了机器学习的概念、基本结构和发展,以及各种机器学习方法,包括机械学习、归纳学习、类比学习、解释学习、基于神经网络的学习以及知识发现等,并简单叙述了机器学习的相关算法,包括决策树算法、随机森林算
svm-predict
- 支持向量机用于回归预测的部分,功能强大又简单容易理解,用于模式识别的好工具-Parts of SVM for predict,gteat function and easy to understand, a good machine for classification
61
- 在分类算法研究onThe应用运行长度的车型分类研究中使用坡道SVM和K近邻-The Research of Vehicle Classification Using SVM and KNN in a ramp
SVM-KM
- KNN k nearest neighbours, this is a method to design which cluster the test sample belong to using the KNN algorithm,which is a matlab code worth using and download.-k nearest neighbours, this is a method to design which cluster the test sample belon
SVMmatlabGUI
- SVM matlab GUI可视化界面 直观形象 代码解释比较详细 对GUI学习和svm学习都有帮助-SVM matlab GUI intuitive visual interface code in the image of a more detailed explanation of the GUI help both learning and svm learning
svm
- 本程序包括:论文SVM 用于基于块划分特征提取的图像分类,和相应的matlab实现其中图像划分以及特征提取、聚类均利用matlab6.5完成。 -The procedures include: paper by SVM for feature extraction based on block classification, and the corresponding realization of one image into matlab, and feature extraction,
svm-and-neast
- 这是对于近邻法与支持向量机的ppt文件,能给学习神经网络方法的初学者帮助-This is the nearest neighbor and support vector machine ppt, learning neural network can give help for beginners
knn
- K近邻分类器,用于模式识别等领域,该程序短小精悍,适合与ANN和SVM进行比较研究,本人多篇论文用到,效果较好。-K-nearest neighbor classifier is often used in pattern recognition and other fields. It is suitful for a comparative study with ANN and SVM. I have published some papers used the code. The effe
project2_code
- 这是matlab编写的Logistic Discrimination 和 KNN分类器代码。这两个算法的实现参考了《Introduction to Machine Learning》。 除此在代码中还包含了调用matlab自带的libsvm的例程。rumLogisticDiscrimination, runKnn, runSvm分别对这3个算法在数据集liver_train_data上的分类准确度进行测试。测试结果在code report.doc 中有简要描述。-This code implem
KNN-and-SVM
- 模式识别中knn和svm的使用,用到matlab的fitcknn和fitcsvm-pattern recognition the use of knn and svm to classify data, using matlab function fitcknn and fitcsvm
CV_KNN
- 使用交叉验证对KNN算法和SVM算法进行参数优选,其中KNN使用matlab自带的knnclassify,svm使用LIBsvm-Using cross validation for the choosing of hyperparameter for KNN and SVM
weka机器学习十大算法
- 对机器学习领域的十个经典算法进行了详细介绍,包括:AdaBoost、Apriori、C4.5、CART、EM、K-means、kNN、PageRand、SVM和朴素贝叶斯(Ten classical algorithms in machine learning domain are introduced in detail, including AdaBoost, Apriori, C4.5, CART, EM, K-means, kNN, PageRand, SVM and Nave Baye
svm-knn
- svm与knn组合模型的matlab实现(Matlab implementation of SVM and KNN combined model)
Detection-system-of-skin-diseases-using-image-processing-master
- To classify four types of skin diseases such as Dermatitis, Melanoma, Diabetic foot ulcer, Impetigo,2 types of ML algorithms KNN and SVM are used. To get a visual representation of classifier output the ROC curve is plotted. To measure the performanc