搜索资源列表
lawmask
- statistical methods in order to extract image texture descr iptors. In particular, we will focus on the Co-occurrence matrices and the Energy filters (Laws filters). They are well-known texture descr iptors, fast and easy to implement and provide g
LawsTexture.rar
- Laws纹理特征提取,使用了功能比较强大的四个模板进行特征提取,以类的形式进行调用。,Laws texture feature extraction
Lawstextureenergymeasure
- Laws纹理策度是用来进行纹理分割的程序,这种方法很有用.-Laws degree texture strategy are used for texture segmentation procedure, this method useful.
laws_texture
- Laws texture Energy-Laws texture Energy
LAWS
- Matlab LAWS能量滤波函数 主要用于纹理的分析-Matlab LAWS energy filtering function is mainly used for texture analysis
javaFrame
- 利用Java3D技术结合《计算机图形学》知识,编程实现太阳、地球和月球的运动模拟。主要是按照天体运动的规律和课程设计的要求,实现太阳、地球和月球的运动,主要包括地球的公转和自转以及月球围绕地球的转动。程序的主要功能需求如下: 1、按照尺寸、相对位置和一致的大小比例生成太阳、地球和月球; 2、为太阳、地球和月球添加适当纹理,增加图形的视觉效果; 3、按照地球公转和自转规律建立运动坐标,实现地球的运动; 4、按照月球的自转和绕地球转动的规律,实现地球和月球的关系运动; 5、改变视
julei
- 一个根据laws能量测度对纹理图像进行分割的程序,分割过程采用K均值聚类的方法-A measure of energy under the laws of the texture image segmentation process, the process of segmentation method using K means clustering
GrayMatrix
- 图像纹理特征描述了在图像中反复出现的局部模式和它们的排列规则,反应宏观意义上灰度变化的一些规律,编程实现基于灰度共生矩阵的图像纹理特征提取-Image texture features described in the repeated images of local models and their regular arrangement, the reaction intensity changes in the macro sense, some laws, programming, GL
OnlyLAWS
- 提取图像的laws纹理,并给予laws的图像分割源代码-To extract image texture, the laws of source code and laws of image segmentation
LAWS
- Laws特征提取例程。本例程对图像进行Laws纹理特征提取,得到1*25的特征向量。-Laws of feature extraction routines this routine Laws on image texture feature extraction, 1 x 25 feature vector
LAWS
- LAWS纹理提取。能够对一幅图像实现LAWS纹理特征的提取,包括特征图像和能力信息。-LAWS texture extraction. LAWS able to achieve an image texture feature extraction, including the ability to feature images and information.
laws
- Laws Texture Measures Laws图像纹理能量测度算法-Laws’ Texture Measures Laws texture energy measure Algorithm
ComputerVision-Problems-master
- Contains three problems - Texture Classification using k means and Laws filters, Vehicle Classification using SIFT and SURF features and BOWs approach and Edge Detection techniques