搜索资源列表
svm
- Support Vector Machine is small sample method based on statistic learning theory. It is a new method to deal with the highly nonlinear classification and regression problems .It can better deal with the small sample, nonlinear and
svm
- 这是一个十分完善的SVM算法。包括各种的线性核和非线性核。能够解决各种分类问题。-This is a very good SVM algorithm. Including the linear kernel and nonlinear kernel. To solve various classification problems.
introductionsvm
- 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中-SVM (Support Vector Machine) is Cortes and Vapnik in 1995, first put forward, which in the settlement of a small sample, nonlinear and high di
svm
- 选用支持向量机作为区分文本与非文本的分类器,支持向量机是在统计学习理论基础上发展起来的新一代学习算法,它在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。-Use support vector machine as the distinction between text and non-text classifier, support vector machine is in statistical learning theory developed on the basis of
SVMClassificationFunction
- this a matlab coding of svm classification function. when inputing training samples, training labels, testing samples, testing labels, and two parameters, the classification result is obtained. linear svm and nonlinear svm can be selected.-this
SVM_FACE
- 基于支持向量机的人脸检测训练集增强算法实现。根据支持向量机(support vector machine,简称SVM)~ ,对基于边界的分类算"~(geometric approach)~ 言,类别边界附近的样本通常比其他样本包含有更多的分类信息.基于这一基本思路,以人脸检测问题为例.探讨了 对给定训练样本集进行边界增强的问题,并为此而提出了一种基于支持向量机和改进的非线性精简集算法 IRS(improved reduced set)的训练集边界样本增强算法,用以扩大-91l练集并改
KPCA
- 核主成分分析方法,是主成分分析的一种改进算法,是一种非线性的特征提取方法。 -Kernel principal component analysis, is the principal component analysis of an improved algorithm, is a nonlinear feature extraction method.
svm
- SVM方法的基本思想是:定义最优线性超平面,并把寻找最优线性超平面的算法归结为求解一个凸规划问题。进而基于Mercer核展开定理,通过非线性映射φ,把样本空间映射到一个高维乃至于无穷维的特征空间(Hilbert空间),使在特征空间中可以应用线性学习机的方法解决样本空间中的高度非线性分类和回归等问题。svm 程序,即支持向量机的代码。-The basic idea of SVM method are: the definition of the optimal linear hyperplane,
SVM
- 支持向量机是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中-Support vector machine is Cortes and Vapnik in 1995 first proposed, it solve the small sample, nonlinear and high dimensional pattern recognition performance in many
Character-Recognition(Lib-SVM)
- 支持向量机的研究现已成为机器学习领域中的研究热点,其理论基础是Vapnik[3]等提出的统计学习理论。统计学习理论采用结构风险最小化准则,在最小化样本点误差的同时,缩小模型泛化误差的上界,即最小化模型的结构风险,从而提高了模型的泛化能力,这一优点在小样本学习中更为突出。SVM理论正是在这一基础上发展而来的,经过十几年的研究和发展,已开始逐步应用于一些领域。在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势,已经在模式识别、函数逼近和概率密度估计等方面取得了良好的效果。- Support
nonlinear-svm-code
- svm线性和非线性的处理源代码。加了很多说明,希望对你有帮助-SVM linear and nonlinear processing the source code. Add a lot of shows, the hope is helpful to you
SVM
- 支撑向量机它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。-Support vector machine to solve it in a small sample, nonlinear and high dimensional pattern recognition performance of the many unique advantages, and to promote the use of the function fitt
Nonlinear-SVM-classifier-design
- 模式识别领域非线性SVM分类器设计原理,代码及过程-Pattern recognition domain nonlinear SVM classifier.experimental design principle, the code and process
svm
- 非线性svm实现样本点的分类,并输出图像,输入数据为矩阵-Nonlinear svm to achieve a classification of the sample points, and the output image, the input data matrix
a-nonlinear-SVM-classifier
- 这是非线性svm分类器的matlab代码,不仅有代码,而且有数据。-This is matlab code of a nonlinear SVM classifier , which not only has the code, but the data.
SVM
- 一个简单易学的SVM程序,包括线性和非线性SVM,并包含二维和三维图像的转化。-An easy to learn SVM procedures, including linear and nonlinear SVM, and includes the conversion of two-dimensional and three-dimensional images.
SVM
- 用简单的代码实现了SVM,其中包括了线性、非线性以及多种kernel。(SVM is implemented with simple code, including linear, nonlinear, and a variety of kernel.)
svm_NonLinear
- 非线性的SVM,利用核函数对所归一化后数据进行处理,得到分类结果(svm_NonLinear Nonlinear SVM, using the kernel function to normalize the data to be processed, the classification results)
SVM
- 包含完整的SVM算法,下载即可使用。其中包括数据集和完整的算法结构,算法结构包括数据清理、核函数升维以及SMO优化算法,可以较好实现数据非线性分类。(Contains the complete SVM algorithm and download it for use. Including the data set and the complete algorithm structure, the algorithm structure includes data cleaning, kerne
SVM
- 利用SVM支持向量机进行信号分类,解决非线性信号问题(SVM support vector machine is used to classify signals and solve nonlinear signal problems.)