- lesson4 单片机pic18f14k50按键输入才c语言程序
- lms 基于的智能天线相位计算程序
- uhd-master This paper investigates the Wiener and least mean square (LMS) algorithms in the design of traversal tap delay line filters for the purpose of compensating the effect of the communication channel. The designed equalizers remove the distortion caused by the channel from the transmitted signal without requiring any specific model or state
- vxqdfiwg 各种kalman滤波器的设计
- R-PEAK-Detection 一种ECG检测的算法
- NNA.m This code provides an example of the nearest neighbour algorithm to solve traveling salesman problem
文件名称:sdToolkit
-
所属分类:
- 标签属性:
- 上传时间:2012-11-16
-
文件大小:27.58kb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
Semi-automatic Differentiation (SD) Toolkit is a Matlab implementation
of the complex step derivative (CSD) technique for the differentiation of real-valued functions. The Toolkit consists of three core functions:
sdGrad.m - Returns CSD approximation of the gradient (g) of the
scalar-valued target function fun(p,Extra), according to Equation 3
of the paper.
sdJac.m - Returns CSD approximation of the Jacobian (J) of the
scalar-valued target function fun(p,Extra), according to Equation 3
of the paper.
sdHg.m - Rerurns CSD approximation of the Hessian (H) of the
scalar-valued target function fun(p,Extra), according to Equation 7 of the
paper. It also returns the centered-difference CSD approximation of the
gradient as a by-product.
For a brief describtion of the functions in the toolkit,
type ,help sdToolkit> at Matlab command prompt.-The sdToolkit demonstrates the complex step derivative method on a variety of functions and geophysically oriented examples
of the complex step derivative (CSD) technique for the differentiation of real-valued functions. The Toolkit consists of three core functions:
sdGrad.m - Returns CSD approximation of the gradient (g) of the
scalar-valued target function fun(p,Extra), according to Equation 3
of the paper.
sdJac.m - Returns CSD approximation of the Jacobian (J) of the
scalar-valued target function fun(p,Extra), according to Equation 3
of the paper.
sdHg.m - Rerurns CSD approximation of the Hessian (H) of the
scalar-valued target function fun(p,Extra), according to Equation 7 of the
paper. It also returns the centered-difference CSD approximation of the
gradient as a by-product.
For a brief describtion of the functions in the toolkit,
type ,help sdToolkit> at Matlab command prompt.-The sdToolkit demonstrates the complex step derivative method on a variety of functions and geophysically oriented examples
(系统自动生成,下载前可以参看下载内容)
下载文件列表
sdToolkit/
sdToolkit/private/
sdToolkit/private/gFault1d.m
sdToolkit/private/myContour.m
sdToolkit/private/Plots.m
sdToolkit/private/sdFgHW2.m
sdToolkit/private/tFun1.m
sdToolkit/private/mDipole2d.m
sdToolkit/private/Jplots.m
sdToolkit/private/tFun2.m
sdToolkit/private/fdGrad.m
sdToolkit/private/fdHess.m
sdToolkit/private/sdFgHW1.m
sdToolkit/private/Contents.m
sdToolkit/private/DampNewton.m
sdToolkit/sdDemo3.m
sdToolkit/sdGradx.m
sdToolkit/readme.txt
sdToolkit/sdDemo1.m
sdToolkit/sdHessq.m
sdToolkit/sdHessx.m
sdToolkit/sdDemo2.m
sdToolkit/sdGrad.m
sdToolkit/sdDemo5.m
sdToolkit/sdDemo6A.m
sdToolkit/sdHg.m
sdToolkit/sdJac.m
sdToolkit/sdLPx.m
sdToolkit/sdDemo6.m
sdToolkit/Contents.m
sdToolkit/sdDemo4.m
sdToolkit/private/
sdToolkit/private/gFault1d.m
sdToolkit/private/myContour.m
sdToolkit/private/Plots.m
sdToolkit/private/sdFgHW2.m
sdToolkit/private/tFun1.m
sdToolkit/private/mDipole2d.m
sdToolkit/private/Jplots.m
sdToolkit/private/tFun2.m
sdToolkit/private/fdGrad.m
sdToolkit/private/fdHess.m
sdToolkit/private/sdFgHW1.m
sdToolkit/private/Contents.m
sdToolkit/private/DampNewton.m
sdToolkit/sdDemo3.m
sdToolkit/sdGradx.m
sdToolkit/readme.txt
sdToolkit/sdDemo1.m
sdToolkit/sdHessq.m
sdToolkit/sdHessx.m
sdToolkit/sdDemo2.m
sdToolkit/sdGrad.m
sdToolkit/sdDemo5.m
sdToolkit/sdDemo6A.m
sdToolkit/sdHg.m
sdToolkit/sdJac.m
sdToolkit/sdLPx.m
sdToolkit/sdDemo6.m
sdToolkit/Contents.m
sdToolkit/sdDemo4.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.