- dnsproxy 实现对google dns 的代理服务
- LSSVM SVM是重要的模式识别方法
- MotifCatcher_v0.12 a MATLAB GUI platform for determination and evaluation of biologically significant motifs
- QAM The code consitst of
- Texto-integral Paper Abstract – An adaptive control of Distributed Generation (DG) to provide predictable active power output at the primary distribution substation is described. Often
- kergelhook GPRS模块SIM300c资料
文件名称:stanford-deep-learning-matlab-code
介绍说明--下载内容来自于网络,使用问题请自行百度
stanford大学deep learning在线课程课后练习代码,我自己写的,可以参考一下。-Excercise of deep learning online course from http://deeplearning.stanford.edu/wiki. It is written by myself, aiming to help other students who is confused in the course.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
cnnConvolve.m
cnnExercise.m
sparseAutoencoderLinearCost.m
softmaxExercise.m
checkStackedAECost.m
softmaxCost.m
softmaxPredict.m
sparseAutoencoderCost.m
stlExercise.m
feedForwardAutoencoder.m
loadMNISTImages.m
pca_gen.m
pca_2d.m
trainMNIST.m
train.m
sparseAutoencoderCost - 副本.m
computeNumericalGradient.m
sampleIMAGES.m
linearDecoderExercise.m
displayColorNetwork.m
stackedAEExercise.m
softmaxTrain.m
stackedAEPredict.m
stackedAECost.m
params2stack.m
stack2params.m
display_network.m
sampleIMAGESRAW.m
loadMNISTLabels.m
checkNumericalGradient.m
initializeParameters.m
cnnPool.m
cnnExercise.m
sparseAutoencoderLinearCost.m
softmaxExercise.m
checkStackedAECost.m
softmaxCost.m
softmaxPredict.m
sparseAutoencoderCost.m
stlExercise.m
feedForwardAutoencoder.m
loadMNISTImages.m
pca_gen.m
pca_2d.m
trainMNIST.m
train.m
sparseAutoencoderCost - 副本.m
computeNumericalGradient.m
sampleIMAGES.m
linearDecoderExercise.m
displayColorNetwork.m
stackedAEExercise.m
softmaxTrain.m
stackedAEPredict.m
stackedAECost.m
params2stack.m
stack2params.m
display_network.m
sampleIMAGESRAW.m
loadMNISTLabels.m
checkNumericalGradient.m
initializeParameters.m
cnnPool.m
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.