- crc32
- fit_mix_2D_gaussian fit
- PQ-IEEE4-5-14-30--57--118 PQ法潮流计算IEEE4
- STM32F4xx-Chinese-data-book STM429/439官方中文数据手册
- 1-s2.0-S0307904X11006330-main An improved method for ranking
- rololo For though result and talent add are parish valley. Songs in oh other avoid it hours woman style. In myself family as if be agreed. Gay collected son him knowledge delivered put. Added would end ask sight and asked saw dried house. Property expenses yourself occasion endeavor two may judgment she. Me of soon rank be most head time tore. Colonel or passage to ability. Mind what no by kept. Celebrated no he decisively thoroughly. Our asked sex point her she seems. New plenty she horses parish design you. Stuff sight equal of my woody. Him children bringing goodness suitable she entirely put far daughter.
文件名称:KSVD_Matlab_ToolBox
-
所属分类:
- 标签属性:
- 上传时间:2013-05-31
-
文件大小:5.97mb
-
已下载:1次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
这是线性训练K-SVD词典的一种新算法
表示的信号。给定一组信号,K-SVD试图
提取物,可以稀疏表示这些信号最好的词典。
深入讨论了K-SVD算法中可以找到的:
“K-SVD:设计的超完备字典的一个算法
稀疏表示”,由M.阿哈,M. Elad和点写,适应性,
在IEEE Transactions出现。在信号处理,卷54,11号,
第4311-4322,十一月2006。-he K-SVD is a new algorithm for training dictionaries for linear
representation of signals. Given a set of signals, the K-SVD tries to
extract the best dictionary that can sparsely represent those signals.
Thorough discussion concerning the K-SVD algorithm can be found in:
"The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for
Sparse Representation", written by M. Aharon, M. Elad, and A.M. Bruckstein,
and appeared in the IEEE Trans. On Signal Processing, Vol. 54, no. 11,
pp. 4311-4322, November 2006.
表示的信号。给定一组信号,K-SVD试图
提取物,可以稀疏表示这些信号最好的词典。
深入讨论了K-SVD算法中可以找到的:
“K-SVD:设计的超完备字典的一个算法
稀疏表示”,由M.阿哈,M. Elad和点写,适应性,
在IEEE Transactions出现。在信号处理,卷54,11号,
第4311-4322,十一月2006。-he K-SVD is a new algorithm for training dictionaries for linear
representation of signals. Given a set of signals, the K-SVD tries to
extract the best dictionary that can sparsely represent those signals.
Thorough discussion concerning the K-SVD algorithm can be found in:
"The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for
Sparse Representation", written by M. Aharon, M. Elad, and A.M. Bruckstein,
and appeared in the IEEE Trans. On Signal Processing, Vol. 54, no. 11,
pp. 4311-4322, November 2006.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
KSVD_Matlab_ToolBox/
KSVD_Matlab_ToolBox/KSVD.m
KSVD_Matlab_ToolBox/KSVD_NN.m
KSVD_Matlab_ToolBox/MOD.m
KSVD_Matlab_ToolBox/NN_BP.m
KSVD_Matlab_ToolBox/OMP.m
KSVD_Matlab_ToolBox/OMPerr.m
KSVD_Matlab_ToolBox/README.txt
KSVD_Matlab_ToolBox/barbara.png
KSVD_Matlab_ToolBox/boat.png
KSVD_Matlab_ToolBox/demo1.m
KSVD_Matlab_ToolBox/demo2.m
KSVD_Matlab_ToolBox/demo3.m
KSVD_Matlab_ToolBox/denoiseImageDCT.m
KSVD_Matlab_ToolBox/denoiseImageGlobal.m
KSVD_Matlab_ToolBox/denoiseImageKSVD.m
KSVD_Matlab_ToolBox/displayDictionaryElementsAsImage.asv
KSVD_Matlab_ToolBox/displayDictionaryElementsAsImage.m
KSVD_Matlab_ToolBox/gererateSyntheticDictionaryAndData.m
KSVD_Matlab_ToolBox/globalTrainedDictionary.mat
KSVD_Matlab_ToolBox/house.png
KSVD_Matlab_ToolBox/lena.png
KSVD_Matlab_ToolBox/my_im2col.m
KSVD_Matlab_ToolBox/peppers256.png
KSVD_Matlab_ToolBox/KSVD.m
KSVD_Matlab_ToolBox/KSVD_NN.m
KSVD_Matlab_ToolBox/MOD.m
KSVD_Matlab_ToolBox/NN_BP.m
KSVD_Matlab_ToolBox/OMP.m
KSVD_Matlab_ToolBox/OMPerr.m
KSVD_Matlab_ToolBox/README.txt
KSVD_Matlab_ToolBox/barbara.png
KSVD_Matlab_ToolBox/boat.png
KSVD_Matlab_ToolBox/demo1.m
KSVD_Matlab_ToolBox/demo2.m
KSVD_Matlab_ToolBox/demo3.m
KSVD_Matlab_ToolBox/denoiseImageDCT.m
KSVD_Matlab_ToolBox/denoiseImageGlobal.m
KSVD_Matlab_ToolBox/denoiseImageKSVD.m
KSVD_Matlab_ToolBox/displayDictionaryElementsAsImage.asv
KSVD_Matlab_ToolBox/displayDictionaryElementsAsImage.m
KSVD_Matlab_ToolBox/gererateSyntheticDictionaryAndData.m
KSVD_Matlab_ToolBox/globalTrainedDictionary.mat
KSVD_Matlab_ToolBox/house.png
KSVD_Matlab_ToolBox/lena.png
KSVD_Matlab_ToolBox/my_im2col.m
KSVD_Matlab_ToolBox/peppers256.png
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.