文件名称:GibbsLDA
-
所属分类:
- 标签属性:
- 上传时间:2014-10-01
-
文件大小:6.26mb
-
已下载:0次
-
提 供 者:
-
相关连接:无下载说明:别用迅雷下载,失败请重下,重下不扣分!
介绍说明--下载内容来自于网络,使用问题请自行百度
LDA算法,用于提取文字中的潜在类别,可以用于推荐个性化新闻之类的
-LDA algorithm used to extract the text of the latent class can be used to recommend personalized news and the like
-LDA algorithm used to extract the text of the latent class can be used to recommend personalized news and the like
(系统自动生成,下载前可以参看下载内容)
下载文件列表
GibbsLDA:references/
GibbsLDA:references/1、An introduction to MCMC for machine learning.pdf
GibbsLDA:references/1、An introduction to MCMC for machine learning(原版).pdf
GibbsLDA:references/2、Latent Dirichlet Allocation.pdf
GibbsLDA:references/3、A correlated topic model of Science.pdf
GibbsLDA:references/4、Gibbs sampling in the generative model of Latent Dirichlet Allocation.pdf
GibbsLDA:references/5、 Finding scientific topics——revisited.pdf
GibbsLDA:references/5、Finding scientific topics.pdf
GibbsLDA:references/5、Finding scientific topics.pptx
GibbsLDA:references/6、Parameter estimation for text analysis.pdf
GibbsLDA:references/7、Probabilistic latent semantic analysis.pdf
GibbsLDA:references/8、LDA-based document models for ad-hoc retrieval.pdf
GibbsLDA:references/GibbsLDA++-0.2/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/Makefile
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/README
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/docs/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/docs/GibbsLDA++Manual.pdf
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/docs/index.html
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.others
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.phi
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.tassign
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.theta
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.twords
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.others
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.phi
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.tassign
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.theta
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.twords
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/trndocs.dat
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/wordmap.txt
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/Makefile
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/constants.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/dataset.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/dataset.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/dataset.o
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/lda
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/lda.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/model.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/model.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/model.o
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/strtokenizer.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/strtokenizer.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/strtokenizer.o
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/utils.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/utils.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/utils.o
GibbsLDA:references/GibbsLDA++-0.2.tar.gz
GibbsLDA:references/1、An introduction to MCMC for machine learning.pdf
GibbsLDA:references/1、An introduction to MCMC for machine learning(原版).pdf
GibbsLDA:references/2、Latent Dirichlet Allocation.pdf
GibbsLDA:references/3、A correlated topic model of Science.pdf
GibbsLDA:references/4、Gibbs sampling in the generative model of Latent Dirichlet Allocation.pdf
GibbsLDA:references/5、 Finding scientific topics——revisited.pdf
GibbsLDA:references/5、Finding scientific topics.pdf
GibbsLDA:references/5、Finding scientific topics.pptx
GibbsLDA:references/6、Parameter estimation for text analysis.pdf
GibbsLDA:references/7、Probabilistic latent semantic analysis.pdf
GibbsLDA:references/8、LDA-based document models for ad-hoc retrieval.pdf
GibbsLDA:references/GibbsLDA++-0.2/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/Makefile
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/README
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/docs/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/docs/GibbsLDA++Manual.pdf
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/docs/index.html
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.others
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.phi
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.tassign
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.theta
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/model-01800.twords
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.others
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.phi
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.tassign
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.theta
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/newdocs.dat.twords
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/trndocs.dat
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/models/casestudy/wordmap.txt
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/Makefile
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/constants.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/dataset.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/dataset.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/dataset.o
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/lda
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/lda.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/model.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/model.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/model.o
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/strtokenizer.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/strtokenizer.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/strtokenizer.o
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/utils.cpp
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/utils.h
GibbsLDA:references/GibbsLDA++-0.2/GibbsLDA++-0.2/src/utils.o
GibbsLDA:references/GibbsLDA++-0.2.tar.gz
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.