- 20080705_cc1964a93c62b895b742zxwp2QBROaUz 写的很好的J2ME手机游戏程序
- science 通用系统
- temp This a C code for the begineers who want to program their avr using 7 segment.
- java 定义一个满足如下要求的Date类: a.用下面的格式输出日期:日/月/年 b.可运行在日期上加一天操作
- Cours-TP_TI Solutions to problems in the field of digital image processing generally require extensive experimental work involving software simulation and testing with large sets of sample images.
- STFT 短时傅里叶变换MATLAB代码
文件名称:MATLAB_CODE_TO_GENERATE_A_PSEUDO_NOISE_SEQUENCE.z
介绍说明--下载内容来自于网络,使用问题请自行百度
A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG),[1] is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by a relatively small set of initial values, called the PRNG s seed (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, pseudorandom number generators are important in practice for their speed in number generation and their reproducibility.[2]
PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed.-A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG),[1] is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by a relatively small set of initial values, called the PRNG s seed (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, pseudorandom number generators are important in practice for their speed in number generation and their reproducibility.[2]
PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed.
PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed.-A pseudorandom number generator (PRNG), also known as a deterministic random bit generator (DRBG),[1] is an algorithm for generating a sequence of numbers whose properties approximate the properties of sequences of random numbers. The PRNG-generated sequence is not truly random, because it is completely determined by a relatively small set of initial values, called the PRNG s seed (which may include truly random values). Although sequences that are closer to truly random can be generated using hardware random number generators, pseudorandom number generators are important in practice for their speed in number generation and their reproducibility.[2]
PRNGs are central in applications such as simulations (e.g. for the Monte Carlo method), electronic games (e.g. for procedural generation), and cryptography. Cryptographic applications require the output not to be predictable earlier outputs, and more elaborate algorithms, which do not inherit the linearity of simpler PRNGs, are needed.
(系统自动生成,下载前可以参看下载内容)
下载文件列表
MATLAB_CODE_TO_GENERATE_A_PSEUDO_NOISE_SEQUENCE_2015_10_13_11_00_03_692.docx
本网站为编程资源及源代码搜集、介绍的搜索网站,版权归原作者所有! 粤ICP备11031372号
1999-2046 搜珍网 All Rights Reserved.