搜索资源列表
plateloc
- 车牌定位使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一
chepaidingwei
- 一个很好的车牌定位 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最
chap12
- 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性
chepaidingwei
- 很好的车牌识别代码 。具体步骤: 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-1|i=0
chepaidingwei
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区
num_identify
- 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j=|Pi,j-Pi,j-
chap12
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
车牌定位
- 车牌定位系统是进行车牌自动识别的重要一部分能正确的获得整个图象的车牌部分 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。 4.削弱背景干扰。对图像B做简单的相邻像素灰度值相减,得到新的图像G,即Gi,j= Pi
feinuo
- 费诺编码输入为+7个信源符号,其概率分布为:(其中信源符号用A+B、、G表示)A_0.2++B_0.19++C_0.18++D_0.17++E_0.15++F_0.10++G_0.01然后输入程序中得到结果(详细文档,值得一下)-Fenno+7 encoding of input source symbols, the probability distribution as follows: (in which source symbols with A+ B,, G said) A_0.2++
ApplicationsOfDepth-FirstTraversal
- 1. 用DFS判断一个无向图是否是连通图; 2. 为有向图的边分类,将它们的边分为前向边、后向边和交叉边; 3. 用DFS和点消除求有向图的拓扑排序; 4. 判断有向图是不是强连通图,若不是,求强连通分量; 5. 判断有向图是不是半连同图; 6. 判断有向图是不是单连通图; 7. 判断无向图是不是双连通图。 通过以上编程对DFS的应用,进一步了解DFS的算法及它所代表的算法思想。 -1. Using DFS to test if a given undirecte
LicensePlateRecognition
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不
6410
- library DXP this g A really good web developmen Fingerprint image extraction pdf An Introduction to Design Pattern Digital Image Processing classic OGRE 3D 1.7 Beginners Guide OReilly Knoppix Hacks 2nd Iterative Methods for Lin
Anisotropic-Diffusion-Code
- 各向异性的边缘检测算法实现,作者Christine Kranenburg-ource code for the Robust Anisotropic Diffusion edge detector described in "Robust Anisotropic Diffusion", by M. Black, G. Sapiro, D. Marimont and D. Heeger, IEEE Trans. Image Processing, vol.7, no. 3, pp.
chepaichuli
- 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性
chepaidingwei
- 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性
libva
- 多核图像处理器基础上的视频编码。提供源代码供大家参考,使用GUI来加速视频解压-video coding [1]–[5] has become the central technology in a wide range of applications. Some of these Tinclude digital TV, DVD, Internet stre
JPEG-EncodeaDecode
- 按如下说明使用此代码: 1.将BC45.rar解压到D:2.将JPEGCode解压到D:3.解压1.Src(自己整理的).rar到D:\JPEGCode目录下 4.运行批处理Build 5.cd src 6.编译生成可执行程序(make) 7.测试代码(make test) 8.清除编译过程文件,包括可执行程序(make clean) 9.体会原版配置编译过程 a)删除3.解压目录 b)解压2.Src(原版).rar到D:\JPEGCode目录下 c
Solution1
- 高频强调滤波和灰度变换进行图像增强: 1. main.m 主程序 2. paddedsize.m 对图像进行补充,以便形成的方形大小等于最小接近的2的整数次幂。 3. dftfilt.m 输入图像f和一个滤波器函数,返回经过滤波和剪切后的图像g。 4. dftuv.m 提供频域坐标网格。 5. lpfilter.m 几种常用的低通滤波器。 6. hpfilter.m 实现高通滤波。 7. BodyImage.JPG 测试用图片 注: 1. 运行程序前,请在ma
1
- 车牌定位 牌照搜索:利用水平投影法检测车牌水平位置,利用垂直投影法检测车牌垂直位置 具体步骤 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T=Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不同牌照有一定的适应性,能够保证背景基本被置为0,以突出牌照区域。
License-plate-location
- 使用说明 使用时打开此例题目录下pic中的图片,然后依次单击按钮“转”、“1”、“2”、“3”、“4”和“5”,就可以实现精确的车牌定位。 具体步骤 1.24位真彩色->256色灰度图。 2.预处理:中值滤波。 3.二值化:用一个初始阈值T对图像A进行二值化得到二值化图像B。 初始阈值T的确定方法是:选择阈值T Gmax-(Gmax-Gmin)/3,Gmax和Gmin分别是最高、最低灰度值。 该阈值对不