搜索资源列表
GeneticAlgorithms_matlab
- X(t)=Asin(2*pi *f *t+ q)+n(t) 估计其中的参数为A,f, q。n(t)为随机噪声,服从正态分布。 其他的具体见附件中的程序 -X (t) = 4sin (2 * pi * f * t q) n (t) is estimated parameters A, f, q. N (t) of random noise, subject to normal. Other specific see annex to the proceedings
SingleNeuralNetwork
- 单输出神经网络拟合如下函数:y=sinx1+xinx2+sinx3+sinx4,变量取值范围=[2,2PI]-single-output neural network function fitting as follows : y = sinx1 xinx2 sinx3 sinx4, variable value in the range = [2,2 PI]
bipso
- 围绕粒子群的当前质心对粒子群重新初始化.这样,每个粒子在随后的迭代中将在新的位置带着粒子在上次搜索中获得的“运动惯性”(wvi)向Pi,Pg的方向前进,从而可以在粒子群的运动过程中获得新的位置,增加求得更优解的机会.随着迭代的继续,经过变异的粒子群又将趋向于同一点,当粒子群收敛到一定程度时又进行下一次变异,如此反复,直到迭代结束.-particle swarm around the center of mass of the current PSO reinitialization. Thus,
MYGA0
- 本程序是一个基本的简单遗传算法示范程序,其优化目标是在〔0,2*pi〕上搜索函数sin(x)*sin(x)的最大值-this procedure is a basic and simple genetic algorithm model procedures, optimizing their goal is [0, 2 * pi] search function sin (x) * sin (x) maximum
model_set1
- 以matlab编写的pi-sigma模糊神经网络程序-to Matlab prepared by the pi-sigma FNN procedures
Pi-Sigma
- 使用混合型pi-sigam网络逼近对象的MATLAB程序,可以参考!希望能对大家有所帮助-use of the mixed-pi-network approximation sigam object MATLAB program, we can make reference! The hope is to help everyone
fuzzy_control_to_imitate_function
- 用神经网络训练来逼近函数:y=8+2*exp(1-x.^2).*cos(2*pi*x)
PI_SIGMA_neural_network
- Pi-sigma神经网络用于非线性对象的逼近
Boltzmann Machin
- 仿真1:首先把网络温度参数T固定在100,按工作规则共进行1000次状态更新,把这1000次状态转移中网络中的各个状态出现的次数Si(i=1,2,…,16)记录下来 按下式计算各个状态出现的实际频率: Pi=Si/∑i=1,NSi=Si/M 同时按照Bo1tzmann分布计算网络各个状态出现概率的理论值: Q(Ei)=(1/Z)exp(-Ei/T) 仿真2:实施降温方案,重新计算 采用快速降温方案:T(t)= T0/(1+t) T从1000降到0.01,按工作规则更新网络状态 当T=0.01时结
BP
- BP算法解决函数y=cos( 2*PI* x )学习问题-BP algorithm to solve function y = cos (2* PI* x) learning problems
NNTrainingofPIController
- it describes the neural network based PI controller
fuzz19withGA
- optimizing a fuzzy rule based PI controller with Genetic Algorithm
dtcit_win32
- 对大滞后系统,本交互式软件提供了PI调节和史密斯预估器调节的比较,对了解大滞后系统的控制很有帮助。-Large delay system, the interactive software provides a PI regulator and the Smith predictor regulation comparison, to understand the lag system helpful.
PIcotrollerusingmracforTan2
- paper: Design PI Controller Using MRAC Tech For Tank2
chap8
- 模糊RBF网络 高级神经网络 基于模糊RBF网络的逼近算法 Pi-Sigma神经网络-High fuzzy RBF network based on fuzzy RBF neural network approximation algorithm for network Pi-Sigma Neural Networks
GA_PI_traffic_control
- 遗传算法对高速公路入口匝道pi控制器的参数优化-Genetic algorithm for highway entrance ramp PI controller parameters optimization
A-Gain-adjusted-Fuzzy-PI-PD-Adaptive-Controller-b
- a gain-adjusted fuzzy PI/PD (GFPIPD) adaptive controller is proposed. The proposed controller first constructs fuzzy rules for fuzzy PD/PI controller with the fixed weighting. Then the fuzzy rules, which self-learning their parameters for a desired
Fuzzy-PI-control-of-PMSM
- 控制系统采用经典的三闭环结构,其中电流环采用id=0的矢量控制策略,速度环采用PI控制,位置环采用模糊PI自适应控制,自适应控制通过Matlab软件编程。文中给出了系统各模块仿真模型的建立方法,并针对工程系统实际参数,进行了负载突加突卸时位置、速度和转矩瞬态过程仿真与分析。结果表明,该系统抗干扰性好,能快速准确地跟踪位置及转速给定。-The control system uses the classic three-loop structure, the current loop id = 0
PI-fuzzy
- 这是关于PI模糊的几篇论文,很有参考价值 -Several papers about PI fuzzy ,is very useful
bp-pi
- 用经验公式优化PI参数,设计神经网络,模拟闭环系统响应。-With experience formula to optimize PI parameter, design neural networks, analog closed-loop system response.