搜索资源列表
LIBSVMsrc
- 一个很好的LIBSVM的JAVA源码。对于要研究和改进SVM算法的学者。可以参考。来自数据挖掘工具YALE工具包。-a good LIBSVM JAVA source. They should study and improve SVM academics. Reference. From Data Mining Tool Kit Yale.
MyFaceRecognition
- 基于局部二值模式的人脸识别范例,其中选用了YALE人脸库作为仿真数据源。-Face recognition based on LBP
pca-svm
- 使用pca和svm方法对表情进行分类,有较高的识别准确率-The use of pca and expression svm classification methods, which have a higher recognition accuracy
2DLDAwiththeSVM-basedfacerecognitionalgorithm
- 二维线性鉴别分析(2DLDA)算法能有效解决线性鉴别分析(LDA)算法的“小样本”效应,支持向量机 (SVM)具有结构风险最小化的特点,将两者结合起来用于人脸识别。首先,利用小波变换获取人脸图像的低频分量,忽 略高频分量:然后,用2DLDA算法提取人脸图像低频分量的线性鉴别特征,用“一对多”的SVM 多类分类算法完成人脸 识别。基于ORL人脸数据库和Yale人脸数据库的实验结果验证了2DLDA+SVM算法应用于人脸识别的有效性。-”Small sample size”problem
PatternRecognition
- (1)Bayes分类 已知N=9, =3,n=2,C=3,问x= 应属于哪一类? (2)聚类 使用c-均值聚类算法在IRIS数据上进行聚类分析 (3)鉴别分析 在ORL或Yale标准人脸数据库上完成模式识别任务。 用PCA与基于核的PCA(KPCA)方法完成人脸图像的重构与识别试验。-(1) Bayes classification Known N = 9, = 3, n = 2, C = 3, x = should ask which cat