搜索资源列表
模拟退火源码
- 模拟退火算法 模拟退火算法(Simulated Annealing,简称SA算法)是模拟加热熔化的金属的退火过程,来寻找全局最优解的有效方法之一。 模拟退火的基本思想和步骤如下: 设S={s1,s2,…,sn}为所有可能的状态所构成的集合, f:S—R为非负代价函数,即优化问题抽象如下: 寻找s*∈S,使得f(s*)=min f(si) 任意si∈S (1)给定一较高初始温度T,随机产生初始状态S (2)按一定方式,对当前状态作随机扰动,产生一个新的状态S’ S’=S+sign(η).δ 其中δ
模拟退火例子1
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
模拟退火例子2
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
模拟退火例子3
- 模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中E为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对
GeneticAlgorithms_matlab
- X(t)=Asin(2*pi *f *t+ q)+n(t) 估计其中的参数为A,f, q。n(t)为随机噪声,服从正态分布。 其他的具体见附件中的程序 -X (t) = 4sin (2 * pi * f * t q) n (t) is estimated parameters A, f, q. N (t) of random noise, subject to normal. Other specific see annex to the proceedings
8queensProblem
- 搜索8皇后问题的第一个解。使用了两种方法:1.普通的回朔法搜索。 2.修改后的搜索(先搜索most contrainted变量的方法) 使用vc++.net 2003开发 -search of a solution. The use of two methods : 1. General Re search Schomburg law. 2. After the revised search (first search contrainted most variable method)
bayesdemo
- BAYESDEMO1 demo how to display discriminat function for Bayes classifier.-BAYESDEMO1 demo how to display Discrimina t function for Bayesian classifier.
gaussianSrc
- The EM algorithm is short for Expectation-Maximization algorithm. It is based on an iterative optimization of the centers and widths of the kernels. The aim is to optimize the likelihood that the given data points are generated by a mixture of Gaussi
FCMmatlab
- every function has its own help which can be obtained by typing \"help name\" where \"name\" is the function, e.g. \"help fcm\"-every function has its own help which can be obtained by typing "help name" where "name" is t he fu
Netlabtoolbox
- The Netlab toolbox is designed to provide the central tools necessary for the simulation of theoretically well founded neural network algorithms and related models for use in teaching, research and applications development. It contains many tech
BPfile
- 这是个可执行文件,源代码在博客可以找到 http://sillyfox.ygblog.com/user1/24279/default.html-This is executable files, the source code can be found at http blog : / / sillyfox.ygblog.com/user1/24279/defaul t.html
OLDA
- 正交线性判别分析(Orthogonal Linear Discriminant Analysis),可以用于数据降维上面。-orthogonal linear discriminant analysis (Orthogonal Linear Discriminan t Analysis), can be used for cutting down the data above.
mergesortedvectors
- If we have two individually sorted vectors \"a\" and \"b\" but they are not sorted with respect to each other and we want to merge them into vector \"c\" such that \"c\" is also a sorted vector. Then c=mergesorted(a,b) can be used. -If we have two
sources_tanagra
- ADaM is a data mining and image processing toolkit-ADaM is a data mining and image processing t oolkit
Recurrent-T-S-FNN
- 递归T-S模糊神经网络学习算法,用遗传算法优化参数-Recursive TS fuzzy neural network learning algorithm, using genetic algorithm parameters
T-Snake-model-for-image-segmentation
- ,本文提出了一种基于遗传算法的双T—Snake模型图像分割方法,它将双T—Snake模型解作为遗传算法的搜 索空间,这既继承了T—Snake模型的拓扑改变能力,又加快了遗传算法的收敛速度。由于它利用遗传算法的全局优 化性能,克服了Snake轮廓局部极小化的缺陷,从而可得到对目标的更精确的分割。将其应用于左心室MRI图像 的分割,取得了较好的效果。-This paper presents a genetic algorithm based on dual-T-Snake model f
T-S
- T-S神经网络m文件,收敛速度快,已尝试-TS neural network m files, fast convergence, have tried. . .
T-S-mohumoxing
- 这里是基于T-S(Sugeno)模型的倒立摆模糊控制程序。可以运行。-Here are handstand based on TS (Sugeno) model of the pendulum fuzzy control procedures. You can run.
T-S-Fuzzy-Neural-Network
- T-S模糊神经网络的matlab源程序,实测可运行,并且可自动显示预测结果与实测结果,便于进行对比-T-S fuzzy neural network matlab source code, can be found running, and can be displayed automatically predicted and measured results, for easy comparison
Recurrent-T-S-FNN
- Recurrent T-S FNN 利用GA优化隶属函数中心、宽度、递归增益及后件参数的主程序-Recurrent T-S FNN